People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petersmann, Sandra
Carinthia University of Applied Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Multi-Material Implant Structures with Medical-Grade Polyurethane via Additive Manufacturingcitations
- 2023Statistical-based optimization of fused filament fabrication parameters for short-carbon-fiber-reinforced poly-ether-ether-ketone considering multiple loading conditionscitations
- 2023Effects of simulated body fluid on the mechanical properties of polycarbonate polyurethane produced via material jettingcitations
- 2023Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylenecitations
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2022Ermüdungsverhalten von 3D-gedrucktem endlosfaserverstärktem Polylactid
- 2022Multimaterial Extrusion-Based Additive Manufacturing of Compliant Crack Arrestercitations
- 2022Effect of die temperature on the fatigue behaviour of PLA produced by means of fused filament fabrication
- 2022The Effects of Washing and Formaldehyde Sterilization on the Mechanical Performance of Poly(methyl Methacrylate) (PMMA) Parts Produced by Material Extrusion-Based Additive Manufacturing or Material Jettingcitations
- 2021Morphology and Weld Strength of a Semi-Crystalline Polymer Produced via Material Extrusion-Based Additive Manufacturing
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2020Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Processcitations
- 2018Material Development and Modelling of a Thermal Insulation Film in Battery Systems
Places of action
Organizations | Location | People |
---|
article
Statistical-based optimization of fused filament fabrication parameters for short-carbon-fiber-reinforced poly-ether-ether-ketone considering multiple loading conditions
Abstract
<p>Fused filament fabrication (FFF) is one of the most widely used additive manufacturing processes and allows the production of complex parts. FFF can manufacture lightweight and strong structural components when processing high-performance carbon-fiber-reinforced thermoplastics. Although the process feasibility for printing 20% short-carbon-fiber reinforced PEEK was already demonstrated in the literature, a systematic study addressing the influence of printing parameters on different loading conditions is still lacking. Therefore, the present study investigates the influence of selected FFF parameters – i.e., layer height (LH), printing temperature (PT) and printing speed (PS) – on three mechanical properties: tensile (UTS), bending (UBS), and impact (UIS) ultimate strengths. The analyzed samples were printed and tested according to a central composite design of experiments, and each parameter's individual and combined effects were assessed by analysis of variance (ANOVA). Different regression models were obtained for each test, allowing the optimization of the parameters for each condition and resulting in three distinct optimized parameter sets. The relationship between parameters and microstructure was also assessed via fractography analyses, showing that lower LH and PS reduce the number and size of volumetric defects observed within the printed parts, as lower values improve interlayer cohesion. Contrarily, PT showed that average values (around 385 °C) benefit the microstructure the most, as higher temperatures result in larger defects and low temperatures reduce interlayer cohesion. Finally, the contour plots of the three produced models were overlaid to identify a universal parameter set capable of simultaneously correlating and maximizing all three performances. This procedure allowed the identification of the following optimized values: LH of 0.1 mm, PT of 385 °C and PS of 17.5 mm/s, resulting in the experimental UTS, UBS and UIS values of 116.7 ± 5 MPa, 167.2 ± 11 MPa and 28.2 ± 3 kJ/m<sup>2</sup>.</p>