People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petersmann, Sandra
Carinthia University of Applied Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Multi-Material Implant Structures with Medical-Grade Polyurethane via Additive Manufacturingcitations
- 2023Statistical-based optimization of fused filament fabrication parameters for short-carbon-fiber-reinforced poly-ether-ether-ketone considering multiple loading conditionscitations
- 2023Effects of simulated body fluid on the mechanical properties of polycarbonate polyurethane produced via material jettingcitations
- 2023Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylenecitations
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2022Ermüdungsverhalten von 3D-gedrucktem endlosfaserverstärktem Polylactid
- 2022Multimaterial Extrusion-Based Additive Manufacturing of Compliant Crack Arrestercitations
- 2022Effect of die temperature on the fatigue behaviour of PLA produced by means of fused filament fabrication
- 2022The Effects of Washing and Formaldehyde Sterilization on the Mechanical Performance of Poly(methyl Methacrylate) (PMMA) Parts Produced by Material Extrusion-Based Additive Manufacturing or Material Jettingcitations
- 2021Morphology and Weld Strength of a Semi-Crystalline Polymer Produced via Material Extrusion-Based Additive Manufacturing
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2020Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Processcitations
- 2018Material Development and Modelling of a Thermal Insulation Film in Battery Systems
Places of action
Organizations | Location | People |
---|
article
Effects of simulated body fluid on the mechanical properties of polycarbonate polyurethane produced via material jetting
Abstract
A possible tissue substitute material, namely a thermoplastic polycarbonate polyurethane with two different hard-to-soft segment ratios, was produced via material jetting. Since application temperature and media can significantly alter the properties of polymeric materials, it is necessary to understand the impact of both. Therefore, tensile and high-cycle fatigue tests were performed without media as well as immersed in a simulated body fluid. The absorption of phosphate-buffered saline (PBS) led to a decrease in stiffness and tensile strength with a simultaneous increase in elongation at break. For the material with less hard segments, an elevated temperature resulted in a similar effect. More hard segments increase tensile strength and elongation at break. Furthermore, the fatigue behaviour deteriorates significantly with increasing fluid uptake. The fatigue strength of fully saturated specimens decreased by about 20% compared to untreated specimens. An absorption of approx. 20% of the PBS absorption maximum already showed a similar decrease.