People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pelto, Jani
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2023Compatibilized PC/ABS blends from solvent recycled PC and ABS polymers from electronic equipment wastecitations
- 2021Micromechanical performance of high-density polyethylene:experimental and modeling approaches for HDPE and its alumina-nanocompositescitations
- 2021Micromechanical performance of high-density polyethylenecitations
- 2020Tribological performance of high density polyethylene (HDPE) composites with low nanofiller loadingcitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2019Matrix morphology and the particle dispersion in HDPE nanocomposites with enhanced wear resistancecitations
- 2019Durable and light weight polymer composites for extreme wear conditions - Abrasive wear and scratch resistance of polymer composites
- 2017Application of encapsulated superabsorbent polymers in cementitious materials for stimulated autogenous healingcitations
- 2017Application of encapsulated superabsorbent polymers in cementitious materials for stimulated autogenous healingcitations
- 2017Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatingscitations
- 2016Uniform and electrically conductive biopolymer-doped polypyrrole coating for fibrous PLAcitations
- 2016Dielectric breakdown properties of mechanically recycled SiO2-BOPP nanocompositescitations
- 2015Influence of processing on the conductive properties of PANI-EB-filled polyethylenecitations
- 2015Application of Biopolymer Doped Polypyrroles in Biomedical Implants and Electrical Stimulation Devices
- 2014Structure and dielectric breakdown strength of nano calcium carbonate/polypropylene compositescitations
- 2014Encapsulation of 3-iodo-2-propynyl N-butylcarbamate (IPBC) in polystyrene-polycaprolactone (PS/PCL) blendscitations
- 2013Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiationcitations
- 2013Surface properties and interaction forces of biopolymer-doped conductive polypyrrole surfaces by atomic force microscopycitations
- 2012Surface modification of nanosilica for PP composites
- 2011Surface modification of nanosilica for PP composites
- 2011Investigation of the optimal processing parameters for picosecond laser-induced microfabrication of a polymer-ceramic hybrid materialcitations
- 2010Effect of low amount of nanosilica on dielectric properties of polypropylenecitations
- 2010Dielectric properties and partial discharge endurance of polypropylene-silica nanocompositecitations
- 2008Thermal, mechanical and dielectric properties of nanostructured epoxy-polyhedral oligomeric silsesquioxane compositescitations
- 2008Surface degradation of nanostructured polypropylene compounds caused by partial dischargescitations
- 2005Development of polyester and polyamide conductive fibrecitations
- 2004Electrical properties of polypropylene and polyaniline compoundscitations
- 2004Nonlinear DC voltage-current characteristics of new polymeric composite materials based on semiconductive polyaniline emeraldine base fillercitations
Places of action
Organizations | Location | People |
---|
article
Compatibilized PC/ABS blends from solvent recycled PC and ABS polymers from electronic equipment waste
Abstract
This study encompasses the development of high-performance PC/ABS blends utilizing recycled PC (r-PC) and recycled ABS (r-ABS) polymers from waste electric and electronic equipment (WEEE) fractions heavily contaminated by flame retardants (FRs). Upgrading of mechanical properties was facilitated by addition of virgin ABS and additives. In total three different WEEE fractions -containing high concentrations of bromine, chloride and phosphorous were purified from polymers other than PC and decontaminated from halogenated contaminants by dissolution-precipitation CreaSolv® Process. In two studied cases the WEEE fractions were optically pre-sorted for PC before purification and decontamination. Gas chromatography (GC-ECD) and X-ray fluorescence (XRF) analyses were performed to validate efficient removal of contaminants from r-PC.<br/><br/>The targeted mechanical properties of polymers to upgrade are notched impact strength and elastic moduli. Upgrading was achieved by using the suitable compatibilizers, and, optionally by a chain extender. First, small-scale laboratory screening test series were conducted for three compatibilizers and different ABS polymers based on micro-compounding experiments. Upscaling test series based on the pre-screening data was then organized on a conventional bench scale twin-screw extruder.<br/><br/>SEM microstructural characterizations of the blend morphology and fractured surfaces are done to correlate structure to the mechanical properties.Dynamic mechanical analysis (DMA) and Rheological Dynamic Analysis (RDA) and Gel permeation chromatography (GPC) provided some insight to the chain branching and molecular weight distribution of r-PC, respectively. Moreover, melt rheology and solid-state mechanical properties of the compatibilized r-PC/ABS blend were thoroughly investigated.<br/><br/>Addition of virgin ABS polymer and a suitable compatibilizer enhance the properties of the recycled PC/ABS 60/40 blends towards virgin-like, allowing easily >55% r-PC content, or in favourable cases much higher than 75% recycled polymer content when applying significant concentration of recycled ABS from CreaSolv® together with some virgin ABS.