Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Charbuillet, Carole

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Reprocessing of polymer blends from WEEE: A methodology for predicting embrittlement6citations

Places of action

Chart of shared publication
Freymond, Clément
1 / 2 shared
Guinault, Alain
1 / 44 shared
Fayolle, Bruno
1 / 25 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Freymond, Clément
  • Guinault, Alain
  • Fayolle, Bruno
OrganizationsLocationPeople

document

Reprocessing of polymer blends from WEEE: A methodology for predicting embrittlement

  • Freymond, Clément
  • Charbuillet, Carole
  • Guinault, Alain
  • Fayolle, Bruno
Abstract

International audience ; For recycling purposes, the thermal degradation of post-consumed (pc) ABS/HIPS and PP/PE blends derived from waste electrical and electronic equipment (WEEE) was obtained by multiple extrusions. The evolution of molar mass (Mw), melt flow index (MFI), and ultimate elongation (εr) of reprocessed blends was evaluated as a function of extrusion cycles. The degradation mechanism of ABS/HIPS blends corresponds to a random chain scission as indicated by a diminution of εr correlated to an increase in MFI and decrease in Mw after 30 cycles of extrusion. The same type of degradation mechanism occurs on the PP/PE blend as shown by the drop in Mw and thus an increase in MFI by a factor of six but only after 11 cycles, thus suggesting the higher thermomechanical resistance of ABS/HIPS. The beginning of the critical molar mass for embrittlement (M'c) zone was reached around 130 and 200 kg/mol for ABS/HIPS and PP/PE, respectively, which can be related to the beginning of the critical MFI zone around 12 and 63 g/10 min (230 °C/2.06 kg), respectively. As a result, we propose an innovative embrittlement criterion using MFI measurements that allow a quick and easy analysis of post-consumed polymer blends.

Topics
  • melt
  • extrusion
  • random
  • hot isostatic pressing
  • polymer blend