People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wießner, Sven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Unlocking the Potential of Lignin: Towards a Sustainable Solution for Tire Rubber Compound Reinforcementcitations
- 2022Electrically conductive and piezoresistive polymer nanocomposites using multiwalled carbon nanotubes in a flexible copolyester: Spectroscopic, morphological, mechanical and electrical properties
- 2022Thermoelectric Performance of Polypropylene/Carbon Nanotube/Ionic Liquid Composites and Its Dependence on Electron Beam Irradiationcitations
- 2021First-Time Investigations on Cavitation in Rubber Parts Subjected to Constrained Tension Using In Situ Synchrotron X-Ray Microtomography (SRμCT)citations
- 2021Treasuring waste lignin as superior reinforcing filler in high cis-polybutadiene rubbercitations
- 2021Fundamentals and working mechanisms of artificial muscles with textile application in the loopcitations
- 2021A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactidecitations
- 2021Improved rheology, crystallization, and mechanical performance of PLA/mPCL blends prepared by electron-induced reactive processingcitations
- 2020Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber compositescitations
- 2018Development and testing of controlled adaptive fiber-reinforced elastomer composites.citations
- 2018Development and testing of controlled adaptive fiber-reinforced elastomer compositescitations
- 2018Blending In Situ Polyurethane-Urea with Different Kinds of Rubber: Performance and Compatibility Aspectscitations
- 2017Strong Strain Sensing Performance of Natural Rubber Nanocompositescitations
- 2017Benefits of hybrid nano-filler networking between organically modified Montmorillonite and carbon nanotubes in natural rubber: Experiments and theoretical interpretations
- 2017Temperature-Dependent Reinforcement of Hydrophilic Rubber Using Ice Crystals
- 2006Effects of interface reactions in complatibilised ground tyre rubber polypropylene etastomeric alloyscitations
Places of action
Organizations | Location | People |
---|
article
A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactide
Abstract
Biodegradable polylactide/masticated natural rubber (PLA/mNR) blends were prepared by electron induced reactive processing (EIReP) without using any chemical additives. The PLA/mNR blends showed droplet-matrix morphology with decreased mNR particle size after EIReP treatment. The absolute value of complex viscosity and storage modulus increased significantly for the EIReP modified blends, suggesting the improved melt strength and elasticity. The crystallization investigation showed that the cold crystallization peak of PLA phase gradually disappeared after EIReP modification. Instead, the crystallization peak arose during melt cooling process. Consequently, the crystallinity of PLA phase increased from 6.2% to 39.0% as the mNR content increased from 0 to 20 wt%. It was found that the softening temperature of PLA examined by dynamic mechanical analysis increased effectively with the characters of higher modulus compared to the non-modified blends. The EIReP modified blends exhibited excellent mechanical properties with 7-fold increase of impact toughness compared with neat PLA, implying a superior interfacial adhesion and chain interactions between the two polymer phases. Furthermore, the thermogravimetric analysis demonstrated that the thermal stability was slightly enhanced for the EIReP modified blends. ; publishedVersion