People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Celiński, Maciej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022The Effect of Manufacture Process on Mechanical Properties and Burning Behavior of Epoxy-Based Hybrid Compositescitations
- 2021Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxidecitations
- 2021Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Compositescitations
- 2021Moisture Resistance, Thermal Stability and Fire Behavior of Unsaturated Polyester Resin Modified with L-histidinium Dihydrogen Phosphate-Phosphoric Acidcitations
- 2020Fire behavior of flame retarded unsaturated polyester resin with high nitrogen content additivescitations
- 2019Flammability Assessment of an Intumescent Flame Retardant Thermoplastic Polymer
- 2019The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-compositescitations
- 2019Thermal Stability, Fire and Smoke Behaviour of Epoxy Composites Modified with Plant Waste Fillerscitations
- 2018Thermal stability, fire behavior, and fumes emission of polyethylene nanocomposites with halogen-free fire retardantscitations
Places of action
Organizations | Location | People |
---|
article
The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-composites
Abstract
In this study, lignocellulosic flour obtained through grinding of Pinus siberica wood (S) was used as a filler for developing epoxy-based (EP) composites characterized by reduced flammability. The influence of filler particle size on flammability, thermal and thermomechanical behavior of the natural composites was discussed in reference to the morphological analysis of final products as well as filler geometrical changes induced by processing. The structural analysis was realized with using 3D tomography. It was found, that introduction of 20 wt % of Pinus siberica wood caused a sharp drop in the heat release rate values, and the lowest results (2.5 times lower compared to EP) was determined for composite with the highest degree of fragmentation. The residue investigation confirmed the influence of particles size on the formation of the swelling structure of char, which effectively inhibits the combustion processes. Moreover, the analysis of gaseous products emitted during the thermal decomposition of composites was performed. The addition of investigated filler caused a decrease in the amount of degradation products, while the quantity of polycyclic aromatic hydrocarbons (PAHs) increased.