Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stevens, Christopher

  • Google
  • 1
  • 7
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Development of a novel fatigue test method for cord-rubber composites13citations

Places of action

Chart of shared publication
Windslow, Richard
1 / 1 shared
Stevens, Christopher A.
1 / 2 shared
Busfield, James J. C.
1 / 6 shared
Busfield, James
1 / 3 shared
Tao, Yinping
1 / 2 shared
Peijs, Ton
1 / 237 shared
Bilotti, Emiliano
1 / 34 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Windslow, Richard
  • Stevens, Christopher A.
  • Busfield, James J. C.
  • Busfield, James
  • Tao, Yinping
  • Peijs, Ton
  • Bilotti, Emiliano
OrganizationsLocationPeople

article

Development of a novel fatigue test method for cord-rubber composites

  • Windslow, Richard
  • Stevens, Christopher A.
  • Busfield, James J. C.
  • Busfield, James
  • Tao, Yinping
  • Stevens, Christopher
  • Peijs, Ton
  • Bilotti, Emiliano
Abstract

Fatigue testing of cord-rubber composites is of significant interest as components manufactured from these materials are typically subjected to repeated loading during service. In this work, initial fatigue tests on a single carbon cord reinforced hydrogenated nitrile butadiene rubber (CC-HNBR) model composite were undertaken using conventional wedge grips which are routinely employed for fatigue testing of cord-rubber composites. Damage evolution was monitored using thermal imaging, while post-failure modes were evaluated using scanning electron microscopy (SEM). Finite element analysis (FEA) was performed to understand the stress state in the gripping region. The observed failure mode in wedge grips based testing was found to be interfacial debonding as a consequence of shear stress concentrations induced by the grips, leading to a significant underestimation of fatigue life. Consequently, an alternative bollard based test methodology was developed for cord-rubber composites. Fatigue data generated using this novel bollard test set-up was compared with data obtained by using conventional wedge grips. Bollard-based testing resulted in tensile fatigue behaviour dominated by cord failure rather than failure by interfacial debonding during accelerated laboratory fatigue testing, making the developed test methodology better suited for the characterisation of intrinsic fatigue behaviour of cord-rubber composites.

Topics
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • fatigue
  • composite
  • interfacial
  • finite element analysis
  • rubber
  • fatigue testing
  • thermography
  • nitrile