People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vallés, Cristina
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024A data-driven model on the thermal transfer mechanism of composite phase change materialscitations
- 2024A data-driven model on the thermal transfer mechanism of composite phase change materialscitations
- 2023Tribology of Copper Metal Matrix Composites Reinforced with Fluorinated Graphene Oxide Nanosheets: Implications for Solid Lubricants in Mechanical Switchescitations
- 2020PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA compositescitations
- 2019Graphene/Polyelectrolyte Layer-by-Layer Coatings for Electromagnetic Interference Shieldingcitations
- 2018Insights into crystallization and melting of high density polyethylene/graphene nanocomposites studied by fast scanning calorimetrycitations
- 2016Effect of the C/O ratio in graphene oxide materials on the reinforcement of epoxy-based nanocompositescitations
- 2014Few layer graphene-polypropylene nanocomposites: the role of flake diametercitations
- 2014The rheological behaviour of concentrated dispersions of graphene oxidecitations
- 2013Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocompositescitations
- 2012Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodescitations
- 2011Simultaneous reduction of graphene oxide and polyaniline: Doping-assisted formation of a solid-state charge-transfer complexcitations
- 2011Graphene: 2D-building block for functional nanocomposites
- 2009Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVDcitations
- 2009Processing route to disentangle multi-walled carbon nanotube towards ceramic compositecitations
- 2008Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVDcitations
- 2007CVD production of double-wall and triple-wall carbon nanotubescitations
- 2007CVD production of double-wall and triple-wall carbon nanotubescitations
- 2006Synthesis and properties of optically active polyaniline carbon nanotube compositescitations
Places of action
Organizations | Location | People |
---|
article
Insights into crystallization and melting of high density polyethylene/graphene nanocomposites studied by fast scanning calorimetry
Abstract
Graphene nanoplatelets (5 wt%) with different diameters (5 and 25 × 10 −6 m in diameter, 6 × 10 −9 m in thickness) filled high density polyethylene nanocomposites were prepared by the melt-mixing method and the effect of graphene nanoplatelets on the polymeric matrix are then investigated by X-ray diffraction, polarized light microscopy, differential scanning calorimetry, fast scanning calorimetry, and rheology. Polarized light microscopy revealed that graphene nanoplatelets of 5 × 10 −6 m promote the decrease in the size of the spherical aggregates during crystallization compared to larger nanoplatelets. From rheological measurements, it was found that even though the viscosity of the nanocomposites with increasing filler diameter was increased significantly compared to the neat polymer, the processability of these materials was not affected. Several melting events for neat high-density polyethylene and graphene nanocomposites were observed by fast scanning calorimetry associated with the small imperfect crystals grown at large supercooling, the nucleation efficiency and the diameter size of the filler. The activation energy values versus the relative extent of crystallization revealed that graphene nanoplatelets block the movement of the molecular segments and make crystallization difficult, especially at the final stage of the process. Based on this work, it can be concluded that the nanocomposite with the smaller diameter showed the most enhanced crystallization kinetics as graphene increased the number of nucleation sites, while the larger ones hindered the melted molecules in reaching full isotropization above the melting temperature.