Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alnaimat, Feras Adnan

  • Google
  • 1
  • 2
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Crack growth in medical-grade silicone and polyurethane ether elastomers5citations

Places of action

Chart of shared publication
Dearn, K. D.
1 / 11 shared
Shepherd, Duncan Et
1 / 24 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Dearn, K. D.
  • Shepherd, Duncan Et
OrganizationsLocationPeople

article

Crack growth in medical-grade silicone and polyurethane ether elastomers

  • Alnaimat, Feras Adnan
  • Dearn, K. D.
  • Shepherd, Duncan Et
Abstract

One major problem with ball and socket artificial discs is the migration of wear particles to the surrounding tissues. This debris can cause inflammation that can lead to implant loosening. Encapsulating the artificial disc with an elastomer sheath, could prevent this problem by retaining the wear particles within the disc. The encapsulation sheath will face millions of tensile cycles during the implant life and, therefore, it must have the ability to withstand large strains without fracture. Using cyclic displacement, crack nucleation was applied on dumbbell specimens and crack growth was applied on rectangular specimens with an initial crack. Both tests were performed on Silex silicone and polyurethane ether<br/>elastomer specimens, both with a Shore durometer hardness of 40 shore A. No samples completely failed during the crack nucleation tests after five million cycles. The polyurethane ether elastomer showed a slower rate of crack growth life (421k cycles to reach 70 mm crack length) than silicone elastomer (221k cycles to reach the same crack length) in the control group. Accelerated ageing decreased the hardness and the crack growth rate of the polyurethane elastomer but had the opposite effect for the silicone elastomer. Gamma sterilization increased the crack growth rate and did not affect the hardness of the polyurethane elastomer. The hardness and the crack growth rate of the<br/>silicone elastomer were increased after gamma sterilization.

Topics
  • impedance spectroscopy
  • crack
  • hardness
  • aging
  • elastomer