People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gunning, Michael A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2016The effect of the mixing routes of biodegradable polylactic acid and polyhydroxybutyrate nanocomposites and compatibilised nanocompositescitations
- 2014The effect of processing conditions for polylactic acid based fibre composites via twin-screw extrusioncitations
- 2014Effect of Compatibilizer Content on the Mechanical Properties of Bioplastic Composites via Hot Melt Extrusioncitations
- 2014Improvement in mechanical properties of grafted polylactic acid composite fibers via hot melt extrusioncitations
- 2014Melt Processing of Bioplastic Composites via Twin Screw Extrusion and Injection Moldingcitations
- 2013Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate compositescitations
Places of action
Organizations | Location | People |
---|
article
Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites
Abstract
<p>The work outlined in this paper describes the evaluation of polyhydroxybutyrate (PHB) based natural fibre composites via an extrusion - injection moulding process. Virgin PHB was compounded with two different naturally occuring plant fibres, hemp and jute, and a third, regenerated cellulose fibre, lyocell. Composite materials containing 10-30 wt% of each type of fibre were obtained by twin screw extrusion and the resultant material was injection moulded to produce tensile samples suitable for mechanical characterisation. Mechanical properties were determined using tensile, impact and flexural testing. Melt flow index and water absorption studies were also carried out on the biocomposite materials, and Fourier transform infrared spectroscopy was used to examine the bonding between the polymer and each fibre type. The rate of biodegradation was also observed by placing composite samples in compost and measuring weight loss weekly. The biocomposites produced using this method were shown to have increased rates of biodegradation whilst exhibiting significantly improved flexural properties.</p>