People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Breemen, Lambèrt C. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditionscitations
- 2024Vezel-geïnduceerde kristallisatie in rekstromingen ; Fiber-induced crystallization in elongational flowscitations
- 2024Fiber-induced crystallization in elongational flowscitations
- 2023Deformation kinetics of single-fiber polypropylene composites:Adhesion improvement at the expense of toughness
- 2023Deformation kinetics of single-fiber polypropylene composites
- 2023Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenescitations
- 2022In Situ Fabrication, Manipulation, and Mechanical Characterization of Free-Standing Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopycitations
- 2022In Situ Fabrication, Manipulation, and Mechanical Characterization of Free-Standing Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopycitations
- 2022Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterizationcitations
- 2020Polarization modulated infrared spectroscopy:A pragmatic tool for polymer science and engineeringcitations
- 2020Polymer spheres
- 2020Polarization modulated infrared spectroscopycitations
- 2020Transient dynamics of cold-rolled and subsequently thermally rejuvenated atactic-polystyrene using broadband dielectric spectroscopycitations
- 2020Thermally Reversible Diels–Alder Bond-Containing Acrylate Networks Showing Improved Lifetimecitations
- 2020Thermally Reversible Diels–Alder Bond-Containing Acrylate Networks Showing Improved Lifetimecitations
- 2019Predicting embrittlement of polymer glasses using a hydrostatic stress criterioncitations
- 2019Hydrostatic stress as indicator for wear initiation in polymer tribologycitations
- 2019Effect of low-temperature physical aging on the dynamic transitions of atactic polystyrene in the glassy statecitations
- 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particlescitations
- 2019Temperature dependent two-body abrasive wear of polycarbonate surfacescitations
- 2019Laser sintering of polymer particle pairs studied by in-situ visualizationcitations
- 2018Contact mechanics of high-density polyethylene: Effect of pre-stretch on the frictional response and the onset of wearcitations
- 2018Thin film mechanical characterization of UV-curing acrylate systemscitations
- 2018Contact mechanics of polyolefins: effect of pre-stretch on the frictional response and the onset of wear
- 2017Experimental setup for in situ visualization studies of laser sintering of polymer particles
- 2011Criteria to predict the embrittlement of polycarbonatecitations
- 2011Extending the EGP constitutive model for polymer glasses to multiple relaxation timescitations
- 2009Predicting the long-term mechanical performance of polycarbonate from thermal history during injection moldingcitations
- 2009Predicting the yield stress of polymer glasses directly from processing conditions: application to miscible systemscitations
- 2009Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic statecitations
- 2006Indentation: the experimenter's holy grail for small-scale polymer characterization?
- 2006Modelling large-strain deformation of thermo-rheologically complex materials : characterisation and validation of PMMA and iPP
- 2005Quantitative prediction of long-term failure of Polycarbonatecitations
- 2004Structure, deformation, and failure of flow-oriented semicrystalline polymerscitations
Places of action
Organizations | Location | People |
---|
article
Deformation kinetics of single-fiber polypropylene composites
Abstract
<p>Despite the maturity of the technology, processing of fiber-reinforced thermoplastic materials remains challenging, and difficulties in processability often result in material formulations with high modulus and strength, yet rather poor ductility compared to the pure polymer matrix. To gain fundamental insight into the deformation mechanisms present in such materials, the complexity of the system is step-wise increased; first, the effect of the most commonly applied adhesion enhancement, the addition of MAH-g-PP compatibilizer, on the bulk properties is assessed. The small-strain tensile properties, i.e., modulus and yield stress, appear to be only marginally affected by the addition of such compatibilization agent, however, the strain-at-break is strongly reduced, even before the addition of the fiber reinforcement. Subsequently, using in-situ X-ray characterization methods upon tensile deformation, the time evolution of crystal structure and lamellar morphology is determined, and at first glance the compatibilizer addition appears to better preserve the crystalline structure. The onset of local failure (cavitation) is quantified at the interface of a single glass fiber. By increasing the adhesive interaction between fiber and matrix the stress concentration at the interface is increased, leading to an acceleration in void formation followed by unstable growth, which in turn strongly embrittles the composite. By the addition of various selective nucleating agents, it is demonstrated that the role of local phase composition and morphology on the deformation kinetics and subsequent failure mechanisms is much more pronounced than the increased adhesion between fiber and matrix by compatibilization or sizing effects. These findings may specify a new route towards tougher fiber-reinforced composites with reduced complexity in the material formulation.</p>