People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holzner, Armin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023Thermally-triggered multi-shape-memory behavior of binary blends of cross-linked EPDM with various thermoplastic polyethylenes and their potential applications as temperature indicatorscitations
- 2020Tribological characteristics of medical gloves in contact with human skin and skin equivalentscitations
Places of action
Organizations | Location | People |
---|
article
Thermally-triggered multi-shape-memory behavior of binary blends of cross-linked EPDM with various thermoplastic polyethylenes and their potential applications as temperature indicators
Abstract
<p>Shape-memory polymers (SMPs) are smart materials that can alter their configuration in response to external stimuli. They have shown promise in a number of application areas, including soft robotics or biomedical devices. Frequently, however, the materials needed are expensive, or labor-intensive synthetic processes are involved. In this contribution, we report a versatile and cost-effective manufacturing method for SMPs based on binary elastomer-thermoplastic-blends. These were produced from ethylene-propylene-diene monomer rubber (EPDM) combined with ultra-low-density polyethylene (ULDPE), propylene-ethylene copolymer (PP-c-PE), or high-density polyethylene (HDPE) as thermoplastic components. Atomic force microscopy revealed an immiscible two-phase morphology. Results of dynamic-mechanical thermal analysis showed that all polymer blends with a high thermoplastic load had efficient thermo-responsive dual-shape-memory, also demonstrated on macroscopic specimens. Furthermore, multi-shape-memory of elastomer/thermoplastic (40/60)-blends was investigated. Especially ULDPE-containing blends exhibited particularly promising multi-shape-memory features and stepless, controllable temperature response. Mechanistically, this is based upon the synergistic interaction of the cross-linked elastomer and the thermoplastic switching phase, consisting of different crystalline segments melting over a wide range from 60 to 125 °C. The continuous shape recovery over a broad temperature range could be used to create reusable test strips, e.g., for indicating exposure temperature in transportation chains or overheating protection.</p>