Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Biqiong

  • Google
  • 15
  • 49
  • 428

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2023Structure and properties of polystyrene-co-acrylonitrile/graphene oxide nanocomposites10citations
  • 2023Tensile and impact properties of melt-blended nylon 6/ethylene-octene copolymer/graphene oxide nanocomposites.citations
  • 2022On the mechanical properties of melt-blended nylon 6/ethylene-octene copolymer/graphene nanoplatelet nanocomposites10citations
  • 2022Wholly biobased polyamide thermoplastic elastomer‐cellulose nanocomposites4citations
  • 2022On the mechanical properties of melt-blended nylon 6/ethylene-octene copolymer/graphene nanoplatelet nanocomposites.10citations
  • 2021The effect of dispersion condition on the structure and properties of polystyrene/graphene oxide nanocomposites41citations
  • 2021Wholly Biobased, Highly Stretchable, Hydrophobic, and Self-healing Thermoplastic Elastomer90citations
  • 2020Microstructure of fibres pressure-spun from polyacrylonitrile–graphene oxide composite mixtures7citations
  • 2020Microstructure and antibacterial efficacy of graphene oxide nanocomposite fibres87citations
  • 2016The effect of the mixing routes of biodegradable polylactic acid and polyhydroxybutyrate nanocomposites and compatibilised nanocomposites11citations
  • 2014Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites65citations
  • 2012Structure-property relationships of polymer blend/clay nanocomposites14citations
  • 2012Porous poly(vinyl alcohol)/sepiolite bone scaffolds: preparation, structure and mechanical properties51citations
  • 2012The effect of maleic anhydride grafting efficiency on the flexural properties of polyethylene composites14citations
  • 2012Structure-property relationships of polymer blend/clay nanocomposites:Compatibilized and noncompatibilized polystyrene/propylene/clay14citations

Places of action

Chart of shared publication
Inkson, Beverley J.
2 / 4 shared
Mohammadsalih, Zaid G.
2 / 3 shared
Catalanotti, Giuseppe
3 / 29 shared
Falzon, Brian G.
2 / 43 shared
Attar, Suhail
3 / 3 shared
Falzon, Brian George
1 / 10 shared
Scalici, Tommasso
2 / 29 shared
Cicala, Gianluca
2 / 8 shared
Yoon, Sungkwon
1 / 2 shared
Nurhamiyah, Yeyen
2 / 3 shared
Themistou, Efrosyni
1 / 5 shared
Amir, Amalina
2 / 3 shared
Edirisinghe, Mohan
3 / 21 shared
Finnegan, Marie
1 / 1 shared
Porwal, Harshit
1 / 7 shared
Mahalingam, Suntharavathanan
1 / 6 shared
Wu, Xiaowen
1 / 2 shared
Wu, Tongfei
2 / 2 shared
Tabish, Tanveer A.
2 / 3 shared
Moger, Julian
1 / 1 shared
Trakoolwilaiwan, Thithawat
1 / 3 shared
Mansfield, Jessica
1 / 1 shared
Parkin, Ivan P.
1 / 14 shared
Matharu, Rupy Kaur
1 / 7 shared
Lourenço, Cláudio
1 / 1 shared
Ciric, Lena
1 / 5 shared
Killion, John A.
1 / 10 shared
Lyons, Sean
1 / 36 shared
Geever, Luke
1 / 31 shared
Gunning, Michael A.
1 / 6 shared
Higginbotham, Clement
1 / 30 shared
Rehman, Ihtesham Ur
1 / 71 shared
Siddique, Naveed A.
1 / 1 shared
Hussain, Rizwan
1 / 3 shared
Hussain, Saleem
1 / 1 shared
Bilal Khan, M.
1 / 1 shared
Ahmed, Iftikhar
1 / 5 shared
Yorucu, Ceyla
1 / 1 shared
Gunning, Micheal A.
2 / 2 shared
Istrate, Oana
2 / 6 shared
Higginbotham, Clement L.
2 / 5 shared
Killeen, David
1 / 1 shared
Frydrych, Martin
1 / 1 shared
Gunning, M. A.
1 / 1 shared
Lyons, J. G.
1 / 1 shared
Geever, L. M.
1 / 1 shared
Blackie, P.
1 / 1 shared
Higginbotham, C. L.
1 / 1 shared
Istrate, Oana M.
1 / 2 shared
Chart of publication period
2023
2022
2021
2020
2016
2014
2012

Co-Authors (by relevance)

  • Inkson, Beverley J.
  • Mohammadsalih, Zaid G.
  • Catalanotti, Giuseppe
  • Falzon, Brian G.
  • Attar, Suhail
  • Falzon, Brian George
  • Scalici, Tommasso
  • Cicala, Gianluca
  • Yoon, Sungkwon
  • Nurhamiyah, Yeyen
  • Themistou, Efrosyni
  • Amir, Amalina
  • Edirisinghe, Mohan
  • Finnegan, Marie
  • Porwal, Harshit
  • Mahalingam, Suntharavathanan
  • Wu, Xiaowen
  • Wu, Tongfei
  • Tabish, Tanveer A.
  • Moger, Julian
  • Trakoolwilaiwan, Thithawat
  • Mansfield, Jessica
  • Parkin, Ivan P.
  • Matharu, Rupy Kaur
  • Lourenço, Cláudio
  • Ciric, Lena
  • Killion, John A.
  • Lyons, Sean
  • Geever, Luke
  • Gunning, Michael A.
  • Higginbotham, Clement
  • Rehman, Ihtesham Ur
  • Siddique, Naveed A.
  • Hussain, Rizwan
  • Hussain, Saleem
  • Bilal Khan, M.
  • Ahmed, Iftikhar
  • Yorucu, Ceyla
  • Gunning, Micheal A.
  • Istrate, Oana
  • Higginbotham, Clement L.
  • Killeen, David
  • Frydrych, Martin
  • Gunning, M. A.
  • Lyons, J. G.
  • Geever, L. M.
  • Blackie, P.
  • Higginbotham, C. L.
  • Istrate, Oana M.
OrganizationsLocationPeople

article

On the mechanical properties of melt-blended nylon 6/ethylene-octene copolymer/graphene nanoplatelet nanocomposites

  • Falzon, Brian George
  • Scalici, Tommasso
  • Cicala, Gianluca
  • Chen, Biqiong
  • Catalanotti, Giuseppe
  • Attar, Suhail
Abstract

Ethylene-octene copolymer (EOC) with a loading level of 20 wt%, maleated EOC (EOC-g-MA) with a loading level of 3 wt% and graphene nanoplatelets (GnPs) at four different loading levels, i.e., 3 wt%, 5 wt%, 10 wt% and 15 wt% were added to nylon 6 to prepare nanocomposites using a twin-screw extruder with a high shear rate screw running at 300 rpm. Increased stiffness was observed with the addition of GnPs while tensile strength of nanocomposites was only slightly influenced. Addition of GnPs into nylon 6 and nylon 6/EOC blend caused either a reduction in the Charpy impact strength or it remained unaffected. Similarly, the Izod impact strength of compatibilized nylon 6/EOC blend increased while that of nylon 6/EOC blend-based nanocomposites decreased. An increase was observed in the compressive Izod impact strength of compatibilized nylon 6/EOC blend. Addition of GnPs to nylon 6/EOC blend caused an increase in the fracture toughness due to their influence on the morphology and fracture mechanisms. This study shows that simultaneous addition of high surface area GnPs and an impact modifier to neat nylon 6 can help achieve enhancement and tailoring of stiffness and toughness.

Topics
  • nanocomposite
  • morphology
  • surface
  • melt
  • strength
  • tensile strength
  • copolymer
  • fracture toughness