People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bernaerts, Katrien
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Investigation of monomer reactivity, polymer microstructure and solubility in the copolymerization of 1,5-dioxepan-2-one with alkyl substituted lactonescitations
- 2022Condensation Polyesterscitations
- 2022Additive Manufacturing of α-Amino Acid Based Poly(ester amide)s for Biomedical Applicationscitations
- 2022The effect of carbon fiber content on physico-mechanical properties of recycled poly(ethylene terephthalate) composites additively manufactured with fused filament fabricationcitations
- 2021Shaping and properties of thermoplastic scaffolds in tissue regeneration: The effect of thermal history on polymer crystallization, surface characteristics and cell fatecitations
- 2021Development of marine oligosaccharides for potential wound healing biomaterials engineeringcitations
- 2021Post-Modification of Biobased Pyrazines and Their Polyesterscitations
- 2021The effect of copolymerization of cyclic dioxolane moieties on polyamide propertiescitations
- 2020Biobased Pyrazine-Containing Polyesterscitations
- 2018Synthesis of isotactic polypropylene-block-polystyrene block copolymers as compatibilizers for isotactic polypropylene/polyphenylene oxide blendscitations
- 2017Increasing the solubility range of polyesters by tuning their microstructure with co-monomers
- 2017Increasing the solubility range of polyesters by tuning their microstructure with co-monomers
- 2017Increasing the solubility range of polyesters by tuning their microstructure with comonomerscitations
- 2017Increasing the solubility range of polyesters by tuning their microstructure with comonomerscitations
Places of action
Organizations | Location | People |
---|
article
The effect of copolymerization of cyclic dioxolane moieties on polyamide properties
Abstract
Upon copolymerization of carbohydrate-based cyclic moieties, they offer a variety of new functionalities and a convenient way to modify the properties of the material. Structurally the electronegative sites present in the cyclic structures have a major influence on hydrogen bonding. In this study the consequences of the incorporation of 2,3:4,5-di-O-methylene-galactarate (GalXH) and 2,3:4,5-di-O-isopropylidene-galactarate (GalXMe) cyclic moieties in aliphatic polyamides are investigated by FT-IR and solid state NMR and a correlation is made with the thermomechanical properties and crystallinity of the copolyamides. The analysis is complemented by the theoretical calculations, which suggest that the amide proton of such polyamides tends to form hydrogen bonds with the acetal oxygen of neighboring GalX (intramolecular) and therefore prevents the interchain hydrogen bonding, resulting in decreased hydrogen bonding density. Despite the conformational rigidity of the GalX comonomers, the decrease in interchain hydrogen bonding leads to a counter intuitive decrease in glass transition temperature with increasing mole percentage GalX comonomer. As suspected the copolymerization of GalX with aliphatic monomers suppresses the crystallinity which is more pronounced for bulkier monomers.