People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Correia, Daniela Maria Silva
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Humidity sensors based on magnetic ionic liquids blended in poly(vinylidene fluoride-co-hexafluoropropylene)citations
- 2023Multifunctional magnetoelectric sensing and bending actuator response of polymer-based hybrid materials with magnetic ionic liquidscitations
- 2023Solid polymer electrolytes based on a high dielectric polymer and ionic liquids for lithium batteriescitations
- 2023High performance ternary solid polymer electrolytes based on high dielectric poly(vinylidene fluoride) copolymers for solid state lithium-ion batteriescitations
- 2022Poly(lactic-co-glycolide) based biodegradable electrically and magnetically active microenvironments for tissue regeneration applicationscitations
- 2022Sustainable lithium-ion battery separators based on poly(3-Hydroxybutyrate-Co-Hydroxyvalerate) pristine and composite electrospun membranescitations
- 2022Poly(vinylidene fluoride-co-hexafluoropropylene) based tri-composites with zeolite and ionic liquid for electromechanical actuator and lithium-ion battery applicationscitations
- 2022Structural organization of ionic liquids embedded in fluorinated polymerscitations
- 2022Lithium-Ion battery solid electrolytes based on poly(vinylidene fluoride)-metal thiocyanate ionic liquid blendscitations
- 2022Ionic liquid-based electroactive materials: a novel approach for cardiac tissue engineering strategiescitations
- 2021Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatingscitations
- 2021Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteriescitations
- 2021Thermal degradation behavior of ionic liquid/ fluorinated polymer composites: Effect of polymer type and ionic liquid anion and cationcitations
- 2020Polymer-based actuators: back to the futurecitations
- 2020Development of poly(l-Lactic Acid)-based bending actuatorscitations
- 2020Ionic liquid-polymer composites: a new platform for multifunctional applicationscitations
- 2020Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymercitations
- 2020Cellulose nanocrystal and water-soluble cellulose derivative based electromechanical bending actuatorscitations
- 2019Ionic-liquid-based printable materials for thermochromic and thermoresistive applicationscitations
- 2018Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: dielectric and electrical conductivity behaviorcitations
- 2018Low-field giant magneto-ionic response in polymer-based nanocompositescitations
- 2016Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composites membranes for efficient arsenic water removalcitations
Places of action
Organizations | Location | People |
---|
article
Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatings
Abstract
Photocurable thermochromic and humidity responsive materials based on polyurethane acrylated (PUA) and bis(1-butyl-3-methylimidazolium) tetrachloronickelate ([Bmim]2[NiCl4]) ionic liquid (IL) have been prepared with varying IL content up to 40 wt% within the polymer matrix. The influence of IL content on the photopolymerization process, morphology, Young modulus and electrical conductivity of the materials was evaluated. All materials present a total polymer conversion of at least 88%. The presence of the IL influences the morphology of PUA, being observed a porous network structure upon IL incorporation into the PUA matrix. All samples show a Tg around room temperature, which is independent of the IL content and a Young modulus that decreases with the IL content. All composites exhibit humidity dependent thermochromism from colourless to blue. Further, the influence of the relative humidity in the colour change was accessed for the sample containing 20 wt% [Bmim]2[NiCl4], being observed that the colour variation is thermally activated and humidity governed, being 55% the minimum value of the relative humidity for colour change to occur. ; FCT (Fundação para a Ciência e Tecnologia) for financial support under the framework of Strategic Funding grants UID/FIS/04650/2020, UID/EEA/04436/2020 and UID/QUI/0686/2020 and project no. PTDC/FIS-MAC/28157/2017. The authors thank funding by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and under the Operational Programme “Competitiveness and Internationalization” - Research and Development (R&D) and Innovation to SMEs – R&D Individuals Projects, grant agreement number 038397. M. S. also acknowledge the National Research grant “Juan de la Cierva” FJCI-2017-31761. Financial support from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA programs is also acknowledged. LCF and DCM also thank the grant ...