People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sixta, Herbert
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Polymer-Based n-Type Yarn for Organic Thermoelectric Textilescitations
- 2023Development of cellulose films by means of the Ioncell® technology, as an alternative to commercial filmscitations
- 2021Exploring digital image correlation technique for the analysis of the tensile properties of all-cellulose compositescitations
- 2021Effect of single-fiber properties and fiber volume fraction on the mechanical properties of Ioncell fiber compositescitations
- 2021Fast and quantitative compositional analysis of hybrid cellulose-based regenerated fibers using thermogravimetric analysis and chemometricscitations
- 2021Process-dependent nanostructures of regenerated cellulose fibres revealed by small angle neutron scatteringcitations
- 2021The fiber-matrix interface in Ioncell cellulose fiber composites and its implications for the mechanical performancecitations
- 2020Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fiberscitations
- 2019Water-induced crystallization and nano-scale spinodal decomposition of cellulose in NMMO and ionic liquid dopecitations
- 2018Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe techniquecitations
- 2018Adhesion properties of regenerated lignocellulosic fibres towards poly (lactic acid) microspheres assessed by colloidal probe techniquecitations
- 2016Deformation mechanisms in ionic liquid spun cellulose fiberscitations
- 2016Ionic Liquids for the Production of Man-Made Cellulosic Fiberscitations
- 2016Wood biorefinery based on γ-valerolactone/water fractionationcitations
- 2016Wood biorefinery based on γ-valerolactone/water fractionationcitations
- 2015Ioncell-Fcitations
- 2015Ioncell-F:A High-strength regenerated cellulose fibre
- 2015Purification and characterization of kraft lignincitations
- 2015Ionic liquids for the production of man-made cellulosic fibers:Opportunities and challengescitations
- 2015High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solutioncitations
- 2014Switchable Ionic Liquids as Delignification Solvents for Lignocellulosic Materialscitations
- 2010Evaluation of experimental parameters in the microbond test with regard to lyocell fiberscitations
Places of action
Organizations | Location | People |
---|
article
Process-dependent nanostructures of regenerated cellulose fibres revealed by small angle neutron scattering
Abstract
| openaire: EC/H2020/715788/EU//WoCaFi ; The nanometric internal structure of polymeric fibres is fundamental for their mechanical properties. Two-dimensional small angle neutron scattering patterns were collected to obtain structural parameters of the elementary fibrils in regenerated cellulose fibres prepared by various fibre spinning technologies. Scattering features were fitted to model functions to derive parameters such as elementary fibril radius, long period of the repeating units of crystal and amorphous phase along the fibre axis, degree of orientation, and ellipticity. The correlation between structural parameters and the mechanical properties was studied for the fibres of different existing spinning processes and for the high-strength fibres. Former group showed high correlation with mechanical properties. The latter group showed generally lower correlation, but showed relatively high correlation with the long period. These structural parameters provide a basis for understanding the structure-property relationship of regenerated cellulose fibres as function of spinning types and conditions for further optimization. ; Peer reviewed