People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Correia, Daniela Maria Silva
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Humidity sensors based on magnetic ionic liquids blended in poly(vinylidene fluoride-co-hexafluoropropylene)citations
- 2023Multifunctional magnetoelectric sensing and bending actuator response of polymer-based hybrid materials with magnetic ionic liquidscitations
- 2023Solid polymer electrolytes based on a high dielectric polymer and ionic liquids for lithium batteriescitations
- 2023High performance ternary solid polymer electrolytes based on high dielectric poly(vinylidene fluoride) copolymers for solid state lithium-ion batteriescitations
- 2022Poly(lactic-co-glycolide) based biodegradable electrically and magnetically active microenvironments for tissue regeneration applicationscitations
- 2022Sustainable lithium-ion battery separators based on poly(3-Hydroxybutyrate-Co-Hydroxyvalerate) pristine and composite electrospun membranescitations
- 2022Poly(vinylidene fluoride-co-hexafluoropropylene) based tri-composites with zeolite and ionic liquid for electromechanical actuator and lithium-ion battery applicationscitations
- 2022Structural organization of ionic liquids embedded in fluorinated polymerscitations
- 2022Lithium-Ion battery solid electrolytes based on poly(vinylidene fluoride)-metal thiocyanate ionic liquid blendscitations
- 2022Ionic liquid-based electroactive materials: a novel approach for cardiac tissue engineering strategiescitations
- 2021Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatingscitations
- 2021Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteriescitations
- 2021Thermal degradation behavior of ionic liquid/ fluorinated polymer composites: Effect of polymer type and ionic liquid anion and cationcitations
- 2020Polymer-based actuators: back to the futurecitations
- 2020Development of poly(l-Lactic Acid)-based bending actuatorscitations
- 2020Ionic liquid-polymer composites: a new platform for multifunctional applicationscitations
- 2020Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymercitations
- 2020Cellulose nanocrystal and water-soluble cellulose derivative based electromechanical bending actuatorscitations
- 2019Ionic-liquid-based printable materials for thermochromic and thermoresistive applicationscitations
- 2018Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: dielectric and electrical conductivity behaviorcitations
- 2018Low-field giant magneto-ionic response in polymer-based nanocompositescitations
- 2016Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composites membranes for efficient arsenic water removalcitations
Places of action
Organizations | Location | People |
---|
article
Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: dielectric and electrical conductivity behavior
Abstract
The glass transition dynamics and the charge transport for blends composed of poly(vinylidene fluoride) (PVDF) and the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [Emim] [TESI] have been investigated as a function of different IL content (0, 10, 25 and 40 % wt) by differential scanning calorimetry (DSC), dynamic-mechanical analysis (DMA) and broadband dielectric relaxation spectroscopy (BDS) in wide frequency and temperature ranges (0.1 Hz-1 MHz and -120 to 150 degrees C, respectively). The inclusion of the IL in the polymer matrix affected the main relaxation process (beta-relaxation) of the amorphous phase of the polymer matrix detected with all the techniques employed. It is demonstrated, that the chain segments of PVDF and the IL are mixed at the nanometer range. The blends were homogeneous regardless of the amount of IL and the glass transition temperature (Tg) shifted to lower temperatures as the IL content was increased. A good agreement between the Tg measured by BDS and DSC was observed for all PVDF/IL samples. The conductivity formalism revealed significant contributions of the IL concentration to the conductivity behavior of the blends in that is described by charge motion and electrode polarization effects. The activation energy of all the PVDF/IL samples, calculated by Dyre model, decreased with IL addition with respect to that of neat PVDF. ; This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013. The authors thank FEDER funds through the COMPETE 2020 Programme and National Funds through FCT under the projects PTDC/CTM-ENE/5387/2014, PTDC/EEI-SII/5582/2014 and UID/CTM/50025/2013 and Grants SFRH/BPD/121526/2016 (D.M.C.), SFRH/BPD/112547/2015 (C.M.C.). Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) (including the FEDER financial support) and from the Basque Government Industry ...