People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sefcik, Jan
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Machine Learning-Derived Correlations for Scale-Up and Technology Transfer of Primary Nucleation Kinetics.
- 2023Machine learning derived correlations for scale-up and technology transfer of primary nucleation kineticscitations
- 2019Measuring secondary nucleation through single crystal seedingcitations
- 2018Enabling precision manufacturing of active pharmaceutical ingredientscitations
- 2017Kinetics of early stages of resorcinol-formaldehyde polymerization investigated by solution phase nuclear magnetic resonance spectroscopycitations
- 2013250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sitescitations
- 2011Structure of laponite-styrene precursor dispersions for production of advanced polymer-clay nanocompositescitations
- 2009Characterization of arsenic-rich waste slurries generated during GaAs wafer lapping and polishing
- 2008Formation of valine microcrystals through rapid antisolvent precipitationcitations
- 2003Monte Carlo simulations of size and structure of gel precursors in silica polycondensationcitations
Places of action
Organizations | Location | People |
---|
article
Kinetics of early stages of resorcinol-formaldehyde polymerization investigated by solution phase nuclear magnetic resonance spectroscopy
Abstract
Resorcinol and formaldehyde reactions were quantitatively monitored by means of <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy at room temperature (293 K) before heat treatment leading to formation of organic gels. We found that resorcinol substitution with formaldehyde starts with an initial surprisingly rapid step followed by a more gradual depletion of the reactants. Substituted species with both monomeric and dimeric hydroxymethyl groups were observed immediately after mixing of the reagents with the proportion of formaldehyde-based solution species consumed between 30 and 50%. Substituted resorcinol species can be all accounted for by solution-phase NMR at ambient conditions before they form nanoscale clusters upon heating. It can therefore be expected that the final properties of resorcinol-formaldehyde gels depend not only on the composition of reaction mixtures and duration of the high temperature treatment but also on the manner and period of reagent mixing (a hitherto overlooked synthesis step), as different amounts of alternatively substituted resorcinol can be produced before heat treatment commences.