Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hassan, Wan Aminah Wan

  • Google
  • 2
  • 4
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Examining the Influence of Bisphenol A on the Polymerisation and Network Properties of An Aromatic Benzoxazine23citations
  • 2013Prediction of selected physical and mechanical properties of a telechelic polybenzoxazine by molecular simulation7citations

Places of action

Chart of shared publication
Ishida, Hatsuo
1 / 4 shared
Liu, Jia
1 / 8 shared
Howlin, Brendan J.
2 / 24 shared
Hamerton, Ian
2 / 113 shared
Chart of publication period
2016
2013

Co-Authors (by relevance)

  • Ishida, Hatsuo
  • Liu, Jia
  • Howlin, Brendan J.
  • Hamerton, Ian
OrganizationsLocationPeople

article

Examining the Influence of Bisphenol A on the Polymerisation and Network Properties of An Aromatic Benzoxazine

  • Ishida, Hatsuo
  • Liu, Jia
  • Hassan, Wan Aminah Wan
  • Howlin, Brendan J.
  • Hamerton, Ian
Abstract

A series of reactive blends, comprising a commercial benzoxazine monomer, 2,2-bis(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine)propane, and bisphenol A is prepared and characterized.Thermal analysis and dynamic rheology reveal how the introduction of up to 15 wt % bisphenol A lead to a significant increase in reactivity (the exothermic peak maximum of thermal polymerization is reduced from 245 ºC to 215 ºC), with a small penalty in glass transition temperature (reduction of 15 K), but similar thermal stability (onset of degradation = 283 ºC, char yield = 26 %).With higher concentrations of bisphenol A (e.g. 25 wt %), a significantly more reactive blend is produced (exothermic peak maximum = 192 ºC), but with a significantly lower thermal stability (onset of degradation = 265 ºC, char yield = 22 %) and glass transition temperature (128 ºC).Attempts to produce a cured plaque containing 35 wt % bisphenol A were unsuccessful, due to brittleness.Molecular modelling is used to replicate successfully the glass transition temperatures (measured using thermal analysis) of a range of copolymers.

Topics
  • impedance spectroscopy
  • glass
  • reactive
  • glass
  • thermal analysis
  • glass transition temperature
  • copolymer