Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Man, S. H. Che

  • Google
  • 1
  • 4
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Nano-sized graphene oxide as sole surfactant in miniemulsion polymerization for nanocomposite synthesis51citations

Places of action

Chart of shared publication
Ly, David
1 / 1 shared
Thickett, Stuart C.
1 / 1 shared
Zetterlund, Per B.
1 / 7 shared
Whittaker, Michael
1 / 15 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Ly, David
  • Thickett, Stuart C.
  • Zetterlund, Per B.
  • Whittaker, Michael
OrganizationsLocationPeople

article

Nano-sized graphene oxide as sole surfactant in miniemulsion polymerization for nanocomposite synthesis

  • Ly, David
  • Man, S. H. Che
  • Thickett, Stuart C.
  • Zetterlund, Per B.
  • Whittaker, Michael
Abstract

<p>Miniemulsion polymerization of styrene using AIBN as initiator at 70 °C has been performed with nano-dimensional graphene oxide (GO) sheets as surfactant (no conventional surfactants employed) with a view to exploring the effects of pH and ionic strength (NaCl concentration). The pH value of the emulsion exerted a relatively minor influence on the polymerization, with a somewhat narrower particle size distribution being obtained at pH = 3.2 relative to pH = 2.4 and 5.2. The ionic strength had a more significant effect - the presence of a suitable concentration of NaCl resulted in increased colloidal stability and narrower particle size distribution. The results are explained in terms of the effects of pH on degree of ionization of COOH groups of GO and the influence of ionic strength on the electric double layer, and have implications with regards to synthesis of polymer/graphene nanocomposite materials for a variety of applications.</p>

Topics
  • nanocomposite
  • polymer
  • strength
  • surfactant
  • pH value