Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paul, Donald R.

  • Google
  • 3
  • 13
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Gas sorption and diffusion in poly(dimethylsiloxane) (PDMS)/graphene oxide (GO) nanocomposite membranes14citations
  • 2014Styrene-butadiene rubber-surface modified carbon nanotube nanocompositescitations
  • 2014Rheological studies of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation20citations

Places of action

Chart of shared publication
Park, Ho Bum
1 / 2 shared
Park, Jaesung
1 / 2 shared
Noh, Jungchul
1 / 1 shared
Yoon, Hee Wook
1 / 1 shared
Ha, Heonjoo
1 / 6 shared
Freeman, Benny D.
2 / 3 shared
Bosnyak, Clive P.
1 / 1 shared
Peddini, Sateesh K.
1 / 1 shared
Henderson, Nancy M.
1 / 2 shared
Mcgrath, James E.
1 / 2 shared
Lee, Kwan Soo
1 / 1 shared
Mecham, Sue
1 / 4 shared
Oh, Hee Jeung
1 / 1 shared
Chart of publication period
2021
2014

Co-Authors (by relevance)

  • Park, Ho Bum
  • Park, Jaesung
  • Noh, Jungchul
  • Yoon, Hee Wook
  • Ha, Heonjoo
  • Freeman, Benny D.
  • Bosnyak, Clive P.
  • Peddini, Sateesh K.
  • Henderson, Nancy M.
  • Mcgrath, James E.
  • Lee, Kwan Soo
  • Mecham, Sue
  • Oh, Hee Jeung
OrganizationsLocationPeople

article

Rheological studies of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation

  • Mcgrath, James E.
  • Paul, Donald R.
  • Lee, Kwan Soo
  • Mecham, Sue
  • Oh, Hee Jeung
  • Freeman, Benny D.
Abstract

<p>Disulfonated poly(arylene ether sulfone) (BPS) random copolymers, prepared from a sulfonated monomer, have been considered for use as membrane materials for various applications in water purification and power generation. These membranes can be melt-processed to avoid the use of hazardous solvent-based processes with the aid of a plasticizer, a low molecular weight poly(ethylene glycol) (PEG). PEG was used to modify the glass transition temperature and melt rheology of BPS to enable coextrusion with polypropylene (PP). Our previous paper discussed the miscibility of BPS with PEG and the influence of PEG on the glass transition of BPS. In this study, the rheological properties of disulfonated poly(arylene ether sulfone)s plasticized with poly(ethylene glycol) (PEG) are investigated to identify coextrusion processing conditions with candidate PPs. The effects of various factors including PEG molecular weight, PEG concentration, temperature and BPS molecular weight on blend viscosity were studied. The rheological data effectively lie on the same master curve developed by Bueche and Harding for non-associating polymers such as poly(methyl methacrylate) (PMMA) and polystyrene (PS). Although sulfonated polysulfone contains ionic groups, the form of its viscosity versus shear rate (or frequency) behavior appears to be dominated by the relaxation of polymer entanglements.</p>

Topics
  • melt
  • glass
  • glass
  • viscosity
  • glass transition temperature
  • random
  • molecular weight
  • copolymer
  • random copolymer