Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hietala, S.

  • Google
  • 1
  • 8
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Investigation of the phase separation of PNIPAM using infrared spectroscopy together with multivariate data analysis26citations

Places of action

Chart of shared publication
Rantanen, Jukka
1 / 43 shared
Munk, Tommy
1 / 2 shared
Tenhu, H.
1 / 1 shared
Rades, Thomas
1 / 107 shared
Nuopponen, M.
1 / 1 shared
Kalliomäki, K.
1 / 1 shared
Baldursdottir, Stefania G.
1 / 8 shared
Strachan, C. S.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Rantanen, Jukka
  • Munk, Tommy
  • Tenhu, H.
  • Rades, Thomas
  • Nuopponen, M.
  • Kalliomäki, K.
  • Baldursdottir, Stefania G.
  • Strachan, C. S.
OrganizationsLocationPeople

article

Investigation of the phase separation of PNIPAM using infrared spectroscopy together with multivariate data analysis

  • Hietala, S.
  • Rantanen, Jukka
  • Munk, Tommy
  • Tenhu, H.
  • Rades, Thomas
  • Nuopponen, M.
  • Kalliomäki, K.
  • Baldursdottir, Stefania G.
  • Strachan, C. S.
Abstract

The use of vibrational spectroscopy to investigate complex structural changes in polymers yields chemically rich data, but interpretation can be challenging and subtle but meaningful spectral changes may be missed through visual inspection alone. Multivariate analysis is an efficient approach to gain an oversight of small but systematic spectral differences anywhere within the spectra, providing further insight into structural changes and associated transformation mechanisms. In this study, the novel analytical approach of infrared spectroscopy combined with principal component analysis and Gaussian peak fitting was used to investigate the structural changes in aqueous solutions of a polymer, using poly(N-isopropyl acrylamide) (PNIPAM) in the atactic form and with controlled tacticity as a model system. Subtle spectral changes associated with the dehydration and phase separation upon heating included peak shifts, an area ratio change of the amide I band to the amide II band and formation of a new peak in the amide I band were efficiently detected. Dehydration and phase separation of PNIPAM occurred in two temperature ranges, one for the atactic and one for isotactic rich part, both involving a complex re-organization of the hydrogen bonds and change of the hydration layer. The changes agreed with existing results from other techniques, and new insights were gained into the effect of controlled tacticity on phase transformation behaviour. The study demonstrates that infrared spectroscopy combined with the multivariate analytical method principal component analysis and Gaussian peak fitting is an efficient approach to probing structural change in polymers during heating. The simplicity of the presented approach could find excellent use in analysing and understanding the molecular environment of a range of stimuli-responsive polymers, for instance block or grafted types of polymers, as well as those with controlled tacticity.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • Hydrogen
  • infrared spectroscopy
  • tacticity