Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zakri, C.

  • Google
  • 9
  • 28
  • 808

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2013Improved strain sensing performance of glass fiber polymer composites with embedded pre-stretched polyvinyl alcohol-carbon nanotube fibers44citations
  • 2010Synthesis and Properties of PVA/Carbon Nanotube Nanocomposites1citations
  • 2010Nanotube fibers for electromechanical and shape memory actuators67citations
  • 2009Kinetics of nanotube and microfiber scission under sonication181citations
  • 2008Influence of surface functionalization on the thermal and electrical properties of nanotube–PVA composites18citations
  • 2008High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers215citations
  • 2008High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers215citations
  • 2008High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillerscitations
  • 2007Thermo-electrical properties of PVA-nanotube composite fibers67citations

Places of action

Chart of shared publication
Alexopoulos, N. D.
1 / 7 shared
Poulin, Philippe
3 / 55 shared
Kourkoulis, S. K.
1 / 2 shared
Jaillet., C.
1 / 1 shared
Poulin, P.
3 / 4 shared
Mercader, C.
2 / 2 shared
Miaudet, P.
3 / 3 shared
Maugey, M.
7 / 8 shared
Kuhn, A.
1 / 7 shared
Derré, A.
3 / 4 shared
Viry, L.
1 / 1 shared
Schoot, Van Der, P. P. A. M.
1 / 17 shared
Pasquali, M.
1 / 6 shared
Lucas, A.
1 / 3 shared
Roubeau, O.
1 / 2 shared
Bartholome, C.
2 / 4 shared
Koning, C. E.
2 / 54 shared
Hart, A. J.
2 / 4 shared
Laake, Van, L. C.
1 / 2 shared
Loos, J.
2 / 67 shared
Grossiord, N.
2 / 13 shared
Van Laake, Lucas Carolus
1 / 2 shared
Grossiord, N. Nadia
1 / 3 shared
Laake, Lc Luuk Van
1 / 1 shared
Koning, Ce Cor
1 / 40 shared
Hart, Aj
1 / 3 shared
Loos, J. Joachim
1 / 22 shared
Sigaud, G.
1 / 1 shared
Chart of publication period
2013
2010
2009
2008
2007

Co-Authors (by relevance)

  • Alexopoulos, N. D.
  • Poulin, Philippe
  • Kourkoulis, S. K.
  • Jaillet., C.
  • Poulin, P.
  • Mercader, C.
  • Miaudet, P.
  • Maugey, M.
  • Kuhn, A.
  • Derré, A.
  • Viry, L.
  • Schoot, Van Der, P. P. A. M.
  • Pasquali, M.
  • Lucas, A.
  • Roubeau, O.
  • Bartholome, C.
  • Koning, C. E.
  • Hart, A. J.
  • Laake, Van, L. C.
  • Loos, J.
  • Grossiord, N.
  • Van Laake, Lucas Carolus
  • Grossiord, N. Nadia
  • Laake, Lc Luuk Van
  • Koning, Ce Cor
  • Hart, Aj
  • Loos, J. Joachim
  • Sigaud, G.
OrganizationsLocationPeople

article

Thermo-electrical properties of PVA-nanotube composite fibers

  • Poulin, Philippe
  • Miaudet, P.
  • Maugey, M.
  • Zakri, C.
  • Derré, A.
  • Sigaud, G.
  • Bartholome, C.
Abstract

We present in this work an experimental study of the resistivity of composite nanotube fibers made of polyvinyl alcohol and multiwalled carbon nanotubes. These fibers which exhibit exceptional mechanical properties could be used for new conductive and multifunctional textiles or composites. We report on their electrical properties and draw two main conclusions: (i) when the fibers contain a large fraction of amorphous polymer, a substantial decrease of the resistivity is observed in the vicinity of the glass transition temperature (Tg) of the pure PVA. On the basis of X-ray diffraction characterizations, we believe that this behavior results from the relaxation of stress in the polymerenanotube composite. Slight structural modifications and partial loss of nanotube alignment at Tg could yield an increase of the density of intertube contacts and thereby to a decrease of the electrical resistivity. (ii) Annealing the fibers at high temperature reduces the fraction of amorphous PVA which becomes more crystalline. As a result, the conductivity becomes more stable and does not exhibit any abrupt variation at Tg. Instead the conductivity is non-metallic with an effective semi-conductor type behavior as observed in other nanotube composites or even in pure nanotube assemblies.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • amorphous
  • Carbon
  • resistivity
  • x-ray diffraction
  • nanotube
  • glass
  • glass
  • composite
  • mass spectrometry
  • thermogravimetry
  • glass transition temperature
  • annealing
  • alcohol