People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Torkelson, John M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Functional enzyme–polymer complexescitations
- 2011Effect of gradient sequencing on copolymer order-disorder transitionscitations
- 2009Melt rheology and x-ray analysis of gradient copolymers
- 2009Glass transition breadths and composition profiles of weakly, moderately, and strongly segregating gradient copolymerscitations
- 2008Microphase separation and shear alignment of gradient copolymerscitations
- 2006Confinement, composition, and spin-coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene-containing random copolymerscitations
- 2005Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition-nanoconfinement effect and the cooperativity length scalecitations
- 2005On the glass transition and physical aging in nanoconfined polymers
- 2004Erratumcitations
- 2004Effects of free-surface and interfacial layers and plasticizer content on the distribution of glass transition temperatures in nanoconfined polymers
- 2004Dramatic reduction of the effect of nanoconfinement on the glass transition of polymer films via addition of small-molecule diluentcitations
- 2004In situ monitoring of sorption and drying of polymer films and coatingscitations
- 2003The distribution of glass-transition temperatures in nanoscopically confined glass formerscitations
- 2002Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labelscitations
Places of action
Organizations | Location | People |
---|
article
In situ monitoring of sorption and drying of polymer films and coatings
Abstract
<p>Sorption and drying processes were monitored in situ in polymer films by a fluorescence rotor probe, 4-tricyanovinyl-[N-(2-hydroxyethyl)-N-ethyl]aniline (TC1), a solvatochromatic fluorescence probe, 4-(N,N-dimethylamino)-4′- nitrostilbene (DANS), and pyrene. Taking advantage of an intensity ratio to monitor sorption, these fluorescence probes were found to serve as self-referencing sensors of water sorption in polyvinylacetate, with DANS being the most sensitive followed by TC1 and pyrene. Additionally, the shapes of the emission spectra (and thus intensity ratios) for TC1 and DANS were independent of temperature over a range of reasonable expected use temperatures. Covalent attachment of these fluorescence dyes was shown to enable the determination of sorbate levels within particular layers of multilayer films or coatings. Finally, these probes were also shown to provide sensitivity to desorption or drying of both water and organic sorbates.</p>