People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arhant, Mael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Degradation mechanisms in PBSAT nets immersed in seawatercitations
- 2024Basalt fibre degradation in seawater and consequences for long term composite reinforcementcitations
- 2024Basalt fibre degradation in seawater and consequences for long term composite reinforcementcitations
- 2024Compression and hydrothermal ageing after impact of carbon fibre reinforced epoxy laminatescitations
- 2023Non-Arrhenian Hydrolysis of Polyethylene Terephthalate – a 5-year Long Aging Study Above and Below The Glass Transition Temperaturecitations
- 2022Hydrolytic degradation of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) - Towards an understanding of microplastics fragmentationcitations
- 2022Hydrolytic degradation of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) - Towards an understanding of microplastics fragmentationcitations
- 2022Material and structural testing to improve composite tidal turbine blade reliabilitycitations
- 2022Chemical coupling between oxidation and hydrolysis in Polyamide 6 - A key aspect in the understanding of microplastic formationcitations
- 2022Chemical coupling between oxidation and hydrolysis in Polyamide 6 - A key aspect in the understanding of microplastic formationcitations
- 2022Fracture test to accelerate the prediction of polymer embrittlement during aging – Case of PET hydrolysiscitations
- 2022Fracture test to accelerate the prediction of polymer embrittlement during aging – Case of PET hydrolysiscitations
- 2021Origin of embrittlement in Polyamide 6 induced by chemical degradations: mechanisms and governing factorscitations
- 2021Origin of embrittlement in Polyamide 6 induced by chemical degradations: mechanisms and governing factorscitations
- 2020Fatigue of improved polyamide mooring ropes for floating wind turbinescitations
- 2019Carbon/polyamide 6 thermoplastic composite cylinders for deep sea applicationscitations
- 2019Carbon/polyamide 6 thermoplastic composite cylinders for deep sea applicationscitations
- 2019Mechanical Behaviour of Composites Reinforced by Bamboo Strips, Influence of Seawater Agingcitations
- 2019Compréhension de la formation des Microplastiques : Impact de l’hydrolyse du polyamide 6 sur les propriétés à la rupture
- 2019Thermoplastic matrix composites for marine applicationscitations
- 2019Comportement Mécanique de Composites Renforcés de Lamelles de Bambou, Influence du Vieillissement dans l’Eau de Mer ; Mechanical Behaviour of Composites Reinforced by Bamboo Strips, Influence of Seawater Agingcitations
- 2019Fatigue Behaviour of Acrylic Matrix Composites: Influence of Seawatercitations
- 2019Impact of hydrolytic degradation on mechanical properties of PET - Towards an understanding of microplastics formationcitations
- 2018Residual Strains using Integrated Continuous Fiber Optic Sensing in Thermoplastic Composites and Structural Health Monitoringcitations
- 2018Durability of Polymers and Composites: The Key to Reliable Marine Renewable Energy Productioncitations
- 2017Yield stress changes induced by water in polyamide 6: Characterization and modelingcitations
- 2016Modelling the non Fickian water absorption in polyamide 6citations
- 2016Thermoplastic Composites for Underwater Applications
- 2016Effect of sea water and humidity on the tensile and compressive properties of carbon-polyamide 6 laminatescitations
- 2015Thermoplastic matrix composites for underwater applications
Places of action
Organizations | Location | People |
---|
article
Origin of embrittlement in Polyamide 6 induced by chemical degradations: mechanisms and governing factors
Abstract
Polyamide 6 films were immersed in two ageing environments inducing either only oxidation or only hydrolysis of the polymer for up to two years. Ageing temperatures ranged from 80°C to 140°C. Samples were characterized periodically in terms of both chemical structure at the macromolecular scale, using SEC, DSC, SASX and WAXS, and mechanical behaviour through tensile tests. Both degradation mechanisms lead to chain scission within the polymer, an increase in crystallinity ratio, a decrease in the amorphous layer thickness and an embrittlement of the polymer. First a decrease in the strain at break is observed while the maximal stress remains unchanged. Then a drop in maximal stress is identified. Using these experimental results, both the origin of the embrittlement and the factors governing embrittlement are discussed. The decrease in strain at break is attributed for the first time in polyamide to the decrease in concentration of tie molecules determined through a theoretical approach. The loss in entanglements is associated with the drop in maximal stress. Furthermore, it is shown that the crystallinity ratio does not govern the embrittlement of polyamide. However, both the molar mass and the amorphous layer thickness are faithful indicators of this embrittlement whatever the degradation mechanism.