People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gac, Pierre Yves Le
Ifremer
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Changes in natural rubber mechanical behavior during oxidation: Relationship with oxygen consumptioncitations
- 2023Non-Arrhenian Hydrolysis of Polyethylene Terephthalate – a 5-year Long Aging Study Above and Below The Glass Transition Temperaturecitations
- 2022Hydrolytic degradation of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) - Towards an understanding of microplastics fragmentationcitations
- 2022Chemical coupling between oxidation and hydrolysis in Polyamide 6 - A key aspect in the understanding of microplastic formationcitations
- 2022Fracture test to accelerate the prediction of polymer embrittlement during aging – Case of PET hydrolysiscitations
- 2022Enhanced thermo-oxidative stability of polydicyclopentadiene containing covalently bound nitroxide groups
- 2021Origin of embrittlement in Polyamide 6 induced by chemical degradations: mechanisms and governing factorscitations
- 2020Impact of thermal oxidation on mechanical behavior of polydicylopentadiene: Case of non-diffusion limited oxidationcitations
- 2020Multiscale study and kinetic modeling of PDCPD thermal oxidation
- 2020Influence of Seawater Ageing on Fracture of Carbon Fiber Reinforced Epoxy Composites for Ocean Engineeringcitations
- 2019Mechanical Behaviour of Composites Reinforced by Bamboo Strips, Influence of Seawater Agingcitations
- 2019Compréhension de la formation des Microplastiques : Impact de l’hydrolyse du polyamide 6 sur les propriétés à la rupture
- 2019Impact of hydrolytic degradation on mechanical properties of PET - Towards an understanding of microplastics formationcitations
- 2018Durability of Polymers and Composites: The Key to Reliable Marine Renewable Energy Productioncitations
- 2018Impact of fillers (short glass fibers and rubber) on the hydrolysis-induced embrittlement of polyamide 6.6citations
- 2017Yield stress changes induced by water in polyamide 6: Characterization and modelingcitations
- 2016Modelling the non Fickian water absorption in polyamide 6citations
- 2016Predictive ageing of elastomers: Oxidation driven modulus changes for polychloroprenecitations
- 2016Effect of sea water and humidity on the tensile and compressive properties of carbon-polyamide 6 laminatescitations
- 2016Fatigue resistance of natural rubber in seawater with comparison to aircitations
- 2015Water diffusivity in PA66: Experimental characterization and modeling based on free volume theorycitations
- 2011Degradation of rubber to metals bonds during its cathodic delamination, validation of an artificial ageing testcitations
Places of action
Organizations | Location | People |
---|
article
Impact of thermal oxidation on mechanical behavior of polydicylopentadiene: Case of non-diffusion limited oxidation
Abstract
Impact of thermal oxidation on mechanical behaviour of polydicyclopentadiene (pDCPD) is studied in this paper. Thermal oxidation is performed over a wide range of ageing temperature, from 20 °C to 120 °C using 60 μm thin films in order to avoid heterogeneous degradation through sample thickness. After several ageing durations, chemical changes were monitored using Fourier-transform infrared spectroscopy (FTIR) and network modification (e.g. glass transition, Tg) was measured using dynamic mechanical analysis (DMA). In addition, tensile tests and fracture tests, based on the essential work of fracture (EWF) concept, were used to study how oxidation affects some mechanical properties of pDCPD. During oxidation polydicyclopentadiene undergoes crosslinking due to the presence of double bonds that leads to a large increase in Tg (from 150 to 225 °C) as well as an increase in rubbery modulus. This increase in Tg results in an increase in maximal stress that can be described using the Kambour relationship. In parallel, an embrittlement of the polymer is observed here with a decrease in both essential and non-essential work of fracture. Finally, it appears that the accelerating effect of ageing temperature can be described using an Arrhenius equation with an activation energy close to 65 kJ/mol for carbonyl formation, maximal stress changes and decrease in fracture energy.