Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Candiotto, Graziâni

  • Google
  • 1
  • 6
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Controlling the biodegradation rates of poly(globalide-co-ε-caprolactone) copolymers by post polymerization modification14citations

Places of action

Chart of shared publication
Wurm, Frederik R.
1 / 42 shared
Ferreira, Sandra R. S.
1 / 1 shared
Araújo, Pedro H. H.
1 / 2 shared
Guindani, Camila
1 / 1 shared
Landfester, Katharina
1 / 11 shared
Oliveira, Débora De
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Wurm, Frederik R.
  • Ferreira, Sandra R. S.
  • Araújo, Pedro H. H.
  • Guindani, Camila
  • Landfester, Katharina
  • Oliveira, Débora De
OrganizationsLocationPeople

article

Controlling the biodegradation rates of poly(globalide-co-ε-caprolactone) copolymers by post polymerization modification

  • Wurm, Frederik R.
  • Ferreira, Sandra R. S.
  • Araújo, Pedro H. H.
  • Candiotto, Graziâni
  • Guindani, Camila
  • Landfester, Katharina
  • Oliveira, Débora De
Abstract

<p>Controlling the degradation rates of polymers is crucial for their application in tissue engineering or to achieve degradation of the polymers in the wastewater purification. As hydrophobic polyesters often exhibit very slow degradation rates, we report here increased biodegradation rates of poly(globalide-co-ε-caprolactone) copolymers (PGlCL) produced by enzymatic ring-opening copolymerization and post-functionalized with N-acetylcysteine by thiol-ene reaction. The degradation rates of the PGlCL and post-modified PGlCL-NAC films were determined by weight-loss experiments. The polymer films were immersed in phosphate-buffered saline (PBS) solution, and PBS containing lipase from Pseudomonas cepacia. The degree of functionalization affected the degradation behavior, and samples with a higher degree of functionalization presented higher weight loss. Finally, a degradation assay was performed in activated sludge, and PGlCL-NAC presented high degradability, having a degradation behavior similar to starch. Density Functional Theory (DFT) calculations were used to assess the changes in chemical properties and electronic charge distribution of PGlCL after its functionalization with NAC, helping to understand its influence in their degradability. The results obtained confirm the possibility to increase the degradation rates of copolyesters based on caprolactone and globalide by thiol-ene post-functionalization, being a promising alternative for applications in biomedicine or the packaging sector.</p>

Topics
  • density
  • impedance spectroscopy
  • theory
  • experiment
  • density functional theory
  • copolymer
  • functionalization