People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Morsch, Suzanne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Multi-Analytical Study of Damage to Marine Ballast Tank Coatings After Cyclic Corrosion Testing
- 2024High resolution analytical microscopy of damage progression within a polyester powder coating after cyclic corrosion testing
- 2023The effect of cross-linker structure on interfacial interactions, polymer dynamics and network composition in an epoxy-amine resincitations
- 2022The influence of mechanical grinding on the microstructure and corrosion behaviour of A356 aluminium alloyscitations
- 2022Molecular origins of Epoxy-Amine/Iron oxide interphase formationcitations
- 2021The influence of mechanical grinding on the microstructure and corrosion behaviour of A356 aluminium alloys
- 2021Local oxidation of the buried epoxy-amine/iron oxide interphasecitations
- 2021Local Oxidation of the Buried Epoxy-Amine / Iron Oxide Interphase
- 2020Spectroscopic insights into adhesion failure at the buried epoxy‐metal interphase using AFM‐IRcitations
- 2020Examining the early stages of thermal oxidative degradation in epoxy-amine resinscitations
- 2019Leaching from coatings pigmented with strontium aluminium polyphosphate inhibitor pigment- evidence for a cluster-percolation modelcitations
- 2019How pigment volume concentration (PVC) and particle connectivity affect leaching of corrosion inhibitive species from coatingscitations
- 2018The Unexpected Role of Carbonate Impurities in Polyphosphate Corrosion Inhibitioncitations
- 2017Molecularly Controlled Epoxy Network Nanostructurescitations
Places of action
Organizations | Location | People |
---|
article
Examining the early stages of thermal oxidative degradation in epoxy-amine resins
Abstract
Epoxy-amine resins continue to find widespread use as the binders in protective and decorative organic coatings, as the matrix in composite materials, and as adhesives. In service, exposure to the environment ultimately results in oxidative deterioration of these materials, limiting the performance lifetime. Defining this auto-oxidation process is therefore a key challenge in developing more durable high-performance materials. In this study, we investigate oxidative degradation of a model resin based on diglycidyl ether of bisphenol-A (DGEBA) and an aliphatic amine hardener, triethylenetetraamine (TETA). Using infrared spectroscopy, we find that prior to the expected detection of formate groups (corresponding to the well-known radical oxidation mechanism of DGEBA), a band at 1658 cm−1 forms, associated with amine cross-linker oxidation. Infrared microspectroscopy, in-situ heated ATR-infrared, Raman spectroscopy and AFM-IR techniques are thus employed to investigate the early stages of resin oxidation and demonstrate strong parallels between the initial stages of cured resin degradation and the auto-oxidation of TETA cross-linker molecules.