People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Altgen, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Effect of Moisture on Polymer Deconstruction in HCl Gas Hydrolysis of Woodcitations
- 2022Review of Wood Modification and Wood Functionalization Technologiescitations
- 2021Water-accessibility of interfibrillar spaces in spruce wood cell wallscitations
- 2021Thermal modification of wood—a review: chemical changes and hygroscopicitycitations
- 2020Observing microfibril bundles in wood by small-angle neutron scattering
- 2020Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scatteringcitations
- 2020Moisture-related changes in the nanostructure of woods studied with X-ray and neutron scatteringcitations
- 2020Resistance of thermally modified and pressurized hot water extracted Scots pine sapwood against decay by the brown-rot fungus Rhodonia placentacitations
- 2018The effect of de- and re-polymerization during heat-treatment on the mechanical behavior of Scots pine sapwood under quasi-static loadcitations
Places of action
Organizations | Location | People |
---|
article
The effect of de- and re-polymerization during heat-treatment on the mechanical behavior of Scots pine sapwood under quasi-static load
Abstract
<p>Loss in strength and ductility is a major drawback for the heat-treatment of solid wood. Previous studies focused mainly on the de-polymerization of cell wall constituents as a cause and the importance of the preferential removal of hemicelluloses. This study tested the hypothesis that the mechanical behavior of wood is additionally affected by re-polymerization reactions within the cell wall matrix during heat-treatment. This was achieved by comparing changes in chemical composition, FT-IR spectra, and mechanical properties of Scots pine sapwood that was heat-treated in either dry state in superheated steam or in wet state using pressurized hot water. Although preferential de-polymerization of hemicelluloses was evident for both heat-treatment techniques, the analysis of the chemical composition and FT-IR spectroscopy indicated additional re-polymerization reactions within the cell wall matrix of dry heat-treated wood. The consequent formation of covalent bonds and cross-links increased the resistance against compression loads and hindered inelastic deformation during bending. This resulted in an additional reduction in bending strength and strain energy density of dry compared to wet heat-treated wood. Re-polymerization reactions during heat-treatments of wood in dry state were suggested as the main cause for the brittle failure under bending loads, while the effect of hemicellulose-removal on brittleness was much smaller than stated previously.</p>