People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arhant, Mael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Degradation mechanisms in PBSAT nets immersed in seawatercitations
- 2024Basalt fibre degradation in seawater and consequences for long term composite reinforcementcitations
- 2024Basalt fibre degradation in seawater and consequences for long term composite reinforcementcitations
- 2024Compression and hydrothermal ageing after impact of carbon fibre reinforced epoxy laminatescitations
- 2023Non-Arrhenian Hydrolysis of Polyethylene Terephthalate – a 5-year Long Aging Study Above and Below The Glass Transition Temperaturecitations
- 2022Hydrolytic degradation of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) - Towards an understanding of microplastics fragmentationcitations
- 2022Hydrolytic degradation of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) - Towards an understanding of microplastics fragmentationcitations
- 2022Material and structural testing to improve composite tidal turbine blade reliabilitycitations
- 2022Chemical coupling between oxidation and hydrolysis in Polyamide 6 - A key aspect in the understanding of microplastic formationcitations
- 2022Chemical coupling between oxidation and hydrolysis in Polyamide 6 - A key aspect in the understanding of microplastic formationcitations
- 2022Fracture test to accelerate the prediction of polymer embrittlement during aging – Case of PET hydrolysiscitations
- 2022Fracture test to accelerate the prediction of polymer embrittlement during aging – Case of PET hydrolysiscitations
- 2021Origin of embrittlement in Polyamide 6 induced by chemical degradations: mechanisms and governing factorscitations
- 2021Origin of embrittlement in Polyamide 6 induced by chemical degradations: mechanisms and governing factorscitations
- 2020Fatigue of improved polyamide mooring ropes for floating wind turbinescitations
- 2019Carbon/polyamide 6 thermoplastic composite cylinders for deep sea applicationscitations
- 2019Carbon/polyamide 6 thermoplastic composite cylinders for deep sea applicationscitations
- 2019Mechanical Behaviour of Composites Reinforced by Bamboo Strips, Influence of Seawater Agingcitations
- 2019Compréhension de la formation des Microplastiques : Impact de l’hydrolyse du polyamide 6 sur les propriétés à la rupture
- 2019Thermoplastic matrix composites for marine applicationscitations
- 2019Comportement Mécanique de Composites Renforcés de Lamelles de Bambou, Influence du Vieillissement dans l’Eau de Mer ; Mechanical Behaviour of Composites Reinforced by Bamboo Strips, Influence of Seawater Agingcitations
- 2019Fatigue Behaviour of Acrylic Matrix Composites: Influence of Seawatercitations
- 2019Impact of hydrolytic degradation on mechanical properties of PET - Towards an understanding of microplastics formationcitations
- 2018Residual Strains using Integrated Continuous Fiber Optic Sensing in Thermoplastic Composites and Structural Health Monitoringcitations
- 2018Durability of Polymers and Composites: The Key to Reliable Marine Renewable Energy Productioncitations
- 2017Yield stress changes induced by water in polyamide 6: Characterization and modelingcitations
- 2016Modelling the non Fickian water absorption in polyamide 6citations
- 2016Thermoplastic Composites for Underwater Applications
- 2016Effect of sea water and humidity on the tensile and compressive properties of carbon-polyamide 6 laminatescitations
- 2015Thermoplastic matrix composites for underwater applications
Places of action
Organizations | Location | People |
---|
article
Modelling the non Fickian water absorption in polyamide 6
Abstract
This paper investigates the water absorption of polyamide 6. The high amount of absorbed water in the polymer and the large resulting decrease in the glass transition temperature (Tg) leads to a non Fickian water diffusion when samples are immersed, which is a significant difficulty when trying to model the water profile in thick specimens. The aim of this study is to be able to model this particular behaviour based on physical considerations. First, it is shown that the non Fickian water diffusion is caused by an increase in the diffusivity during water absorption. Two cases are then identified; one below Tg where the diffusivity is described using an Arrhenius law and one above Tg based on the free volume theory. Then, these two laws are implemented in a specific model that is able to describe the non Fickian water diffusion over a wide range of temperatures.