People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Al-Malaika, Sahar
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2021Influence of anti-ageing compounds on rheological properties of bitumencitations
- 2021Effect of processing conditions and catalyst type on the thermal oxidative degradation mechanisms and melt stability of metallocene and Ziegler‐catalyzed ethylene‐1‐hexene copolymerscitations
- 2021New and novel stabilisation approach for radiation-crosslinked Ultrahigh Molecular Weight Polyethylene (XL-UHMWPE) targeted for use in orthopeadic implantscitations
- 2020Photo-stabilization of biopolymers-based nanocomposites with UV-modified layered silicatescitations
- 2017Novel strategic approach for the thermo- and photo-oxidative stabilization of polyolefin/clay nanocompositescitations
- 2017Novel strategic approach for the thermo- and photo- oxidative stabilization of polyolefin/clay nanocompositescitations
- 2017Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activitycitations
- 2015Novel organo-modifier for thermally-stable polymer-layered silicate nanocompositescitations
- 2013Influence of processing and clay type on nanostructure and stability of polypropylene-clay nanocompositescitations
- 2011Effect of contact surfaces on the thermal and photoxidation of dehydrated castor oilcitations
- 2010Reactive processing of polymerscitations
- 2009Effect of extrusion and photo-oxidation on polyethylene/clay nanocompositescitations
- 2009Reactive processing of polymers: structural characterization of products by 1H and 13C NMR spectroscopy for glycidyl methacrylate grafting onto EPR in the absence and presence of a reactive comonomercitations
- 2008Special issue of PDS - Based on PDDG meeting, Aston University, September 2007, in honour of Professor Norman Billingham
- 2006Metallocene ethylene-1-octene copolymerscitations
- 2005Polymer degradation and stabilitycitations
- 2004Perspectives in stabilisation of polyolefinscitations
- 2003Oxidative degradation and stabilisation of polymerscitations
Places of action
Organizations | Location | People |
---|
article
Novel organo-modifier for thermally-stable polymer-layered silicate nanocomposites
Abstract
A new novel approach for the stabilisation of polymer-clay nanocomposites has been investigated based on reacting chemically an antioxidant function, a hindered phenol moiety, with an organic modifier based on a quaternary ammonium salt. The chemically linked antioxidant-containing organic modifier (AO-OM) was then introduced into natural montmorillonite (MMt) through a cation-exchange reaction resulting in antioxidant-containing organo-modified clay (AO-OM-MMt). The new antioxidant-containing modified clay, along with other organo-modified clays having a similar organo-modifier but without the reacted antioxidant, were characterised by spectroscopic, thermogravimetric and x-ray diffraction techniques and tested for their thermo-oxidative stability. PA11-based clay nanocomposites samples containing the AO-OM-MMt and the other organo-modified clays, both without and with an added (i.e. not chemically reacted) hindered phenol antioxidant (similar to the one used in the AO-OM) were prepared by melt processing and examined for their processing and long-term thermal-oxidative stability at high temperatures. It was shown that although the new organo-modifier, AO-OM, was also susceptible to the Hoffman elimination reaction, the nanocomposites containing this newly modified clay (PA11/AO-OM-MMt) showed higher melt processing and long-term thermo-oxidative stability, along with excellent clay dispersion and exfoliation, compared to the other PA11-nanocomposites examined here (with and without the conventionally added antioxidant). It is suggested here that the excellent overall performance observed for the PA11/AO-OM-MMt nanocomposites is due to an in-situ partial release of low molecular weight antioxidant species having stabilising functionalities that are capable of acting locally at the interface between the inorganic clay platelets and the polymeric matrix which is a critical area for the onset of degradation processes.