Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fischer, D.

  • Google
  • 18
  • 56
  • 788

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2019Electron beam treatment of polyacrylonitrile copolymer above the glass transition temperature in air and nitrogen atmosphere14citations
  • 2019Influence of gas atmosphere on electron-induced reactions of polyacrylonitrile homopolymer powder at elevated temperature8citations
  • 2017Development of electrically conductive microstructures based on polymer/CNT nanocomposites via two-photon polymerizationcitations
  • 2014Achieving β-phase poly(vinylidene fluoride) from melt cooling: Effect of surface functionalized carbon nanotubes155citations
  • 2013Influence of processing and clay type on nanostructure and stability of polypropylene-clay nanocomposites23citations
  • 2012A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method29citations
  • 2010Investigation of physical and chemical property changes of ultra low-kappa SiOCH in aspect of cleaning and chemical repair processes8citations
  • 2010Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes113citations
  • 2009Liquid sensing properties of fibers prepared by melt spinning from poly (lactic acid) containing multiwalled carbon nanotubescitations
  • 2007Styrene maleic anhydride copolymer mediated dispersion of single wall carbon nanotubes in polyamide 12: Crystallization behavior and morphology32citations
  • 2007Multiwalled carbon nanotubes produced by a continuous CVD method and their use in melt mixed composites with polycarbonate9citations
  • 2005Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning217citations
  • 2005Investigation of the orientation in composite fibers of polycarbonate with multiwalled carbon nanotubes by raman microscopy33citations
  • 2005Reactive compatibilization of melt mixed PA6/SWNT composites: Mechanical properties and morphology71citations
  • 2004Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites76citations
  • 2004Determination of the semi-solid behavior of steelscitations
  • 2004Introduction of a full automated process for the production of automotive steel partscitations
  • 2004Investigations on steel grades and tool materials for thixoforgingcitations

Places of action

Chart of shared publication
Wolz, D. S. J.
2 / 5 shared
Böhm, R.
2 / 71 shared
Jäger, Hubert
2 / 41 shared
Gohs, U.
2 / 8 shared
Malanin, M.
2 / 4 shared
Cherif, C.
2 / 15 shared
Kirsten, M.
1 / 3 shared
Brünig, H.
5 / 10 shared
Häussler, L.
2 / 5 shared
Müller, M.-T.
2 / 2 shared
Richter, M.
1 / 25 shared
Leopold, A.-K.
1 / 1 shared
Krause, Beate
1 / 89 shared
Esen, C.
1 / 1 shared
Voit, B.
2 / 22 shared
Zyla, G.
1 / 3 shared
Ostendorf, A.
1 / 4 shared
Janke, A.
3 / 26 shared
Staudinger, U.
1 / 3 shared
Jehnichen, D.
3 / 14 shared
Ke, K.
1 / 2 shared
Pötschke, Petra
9 / 330 shared
Masarati, E.
1 / 2 shared
Al-Malaika, Sahar
1 / 18 shared
Sheena, Husam
1 / 2 shared
Jansen, M.
1 / 4 shared
Fuente, Germán F. De La
1 / 23 shared
Schaller, M.
1 / 6 shared
Oszinda, T.
1 / 4 shared
Schulz, S. E.
1 / 18 shared
Walsh, C.
1 / 1 shared
Pegel, S.
1 / 24 shared
Andres, T.
2 / 5 shared
Villmow, T.
2 / 25 shared
Kobashi, K.
2 / 5 shared
Hdussler, L.
1 / 1 shared
Brtinig, H.
1 / 1 shared
Häußler, L.
3 / 11 shared
Bose, S.
1 / 20 shared
Kulkami, A. R.
1 / 1 shared
Bhattacharyya, A. R.
3 / 18 shared
Magrez, A.
1 / 4 shared
Forró, L.
1 / 9 shared
Simon, F.
1 / 15 shared
Abdel-Goad, M.
1 / 8 shared
Cucatto, A.
2 / 2 shared
Robelet, M.
2 / 2 shared
Rassili, A.
2 / 3 shared
Walkin, B.
2 / 2 shared
Klemm, H.
2 / 8 shared
Demurger, J.
1 / 1 shared
Karlsson, M.
2 / 5 shared
Behrens, B.-A.
2 / 29 shared
Flüß, A.
1 / 1 shared
Haller, B.
2 / 3 shared
Schober, R.
1 / 2 shared
Chart of publication period
2019
2017
2014
2013
2012
2010
2009
2007
2005
2004

Co-Authors (by relevance)

  • Wolz, D. S. J.
  • Böhm, R.
  • Jäger, Hubert
  • Gohs, U.
  • Malanin, M.
  • Cherif, C.
  • Kirsten, M.
  • Brünig, H.
  • Häussler, L.
  • Müller, M.-T.
  • Richter, M.
  • Leopold, A.-K.
  • Krause, Beate
  • Esen, C.
  • Voit, B.
  • Zyla, G.
  • Ostendorf, A.
  • Janke, A.
  • Staudinger, U.
  • Jehnichen, D.
  • Ke, K.
  • Pötschke, Petra
  • Masarati, E.
  • Al-Malaika, Sahar
  • Sheena, Husam
  • Jansen, M.
  • Fuente, Germán F. De La
  • Schaller, M.
  • Oszinda, T.
  • Schulz, S. E.
  • Walsh, C.
  • Pegel, S.
  • Andres, T.
  • Villmow, T.
  • Kobashi, K.
  • Hdussler, L.
  • Brtinig, H.
  • Häußler, L.
  • Bose, S.
  • Kulkami, A. R.
  • Bhattacharyya, A. R.
  • Magrez, A.
  • Forró, L.
  • Simon, F.
  • Abdel-Goad, M.
  • Cucatto, A.
  • Robelet, M.
  • Rassili, A.
  • Walkin, B.
  • Klemm, H.
  • Demurger, J.
  • Karlsson, M.
  • Behrens, B.-A.
  • Flüß, A.
  • Haller, B.
  • Schober, R.
OrganizationsLocationPeople

article

Influence of processing and clay type on nanostructure and stability of polypropylene-clay nanocomposites

  • Masarati, E.
  • Al-Malaika, Sahar
  • Fischer, D.
  • Sheena, Husam
Abstract

<p>Melt processing is a critical step in the manufacture of polymer articles and is even more critical when dealing with inhomogeneous polymer-clay nanocomposites systems. The chemical composition, and in particular the clay type and its organic modification, also plays a major contribution in determining the final properties and in particular the thermal and long-term oxidative stability of the resulting polymer nanocomposites. Proper selection and tuning of the process variable should, in principle, lead to improved characteristics of the fabricated product. With multiphase systems containing inorganic nanoclays, however, this is not straightforward and it is often the case that the process conditions are chosen initially to improve one or more desired properties at the expense of others. <br/></p><p>This study assesses the influence of organo-modified clays and the processing parameters (extrusion temperature and screw speed) on the rheological and morphological characteristics of polymer nanocomposites as well as on their melt and thermo-oxidative stability. Nanocomposites (PPNCs) based on PP, maleated PP and organically modified clays were prepared in different co-rotating twin-screw extruders ranging from laboratory scale to semi-industrial scale. Results show that the amount of surfactant present in similar organo-modified clays affects differently the thermo-oxidative stability of the extruded PPNCs and that changes in processing conditions affect the clay morphology too. By choosing an appropriate set of tuned process variables for the extrusion process it would be feasible to selectively fabricate polymer-clay nanocomposites, with the desired mechanical and thermo-oxidative characteristics.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • polymer
  • melt
  • extrusion
  • chemical composition
  • surfactant