Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohammed, Musarrat H.

  • Google
  • 1
  • 5
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Physical properties of poly(ether ether ketone) exposed to simulated severe oilfield service conditions13citations

Places of action

Chart of shared publication
Banks, William M.
1 / 1 shared
Pethrick, Richard A.
1 / 5 shared
Thomson, Barry
1 / 2 shared
Hayward, David
1 / 3 shared
Liggat, John J.
1 / 36 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Banks, William M.
  • Pethrick, Richard A.
  • Thomson, Barry
  • Hayward, David
  • Liggat, John J.
OrganizationsLocationPeople

article

Physical properties of poly(ether ether ketone) exposed to simulated severe oilfield service conditions

  • Banks, William M.
  • Mohammed, Musarrat H.
  • Pethrick, Richard A.
  • Thomson, Barry
  • Hayward, David
  • Liggat, John J.
Abstract

<p>The property changes occurring when poly(ether ether ketone) (PEEK) is subject to methane and carbon dioxide at high pressures (10<sup>8</sup> Pa) and high temperatures (175-200 °C) are reported. Differential scanning calorimetry, density gradient techniques, positron annihilation lifetime spectroscopy, dynamic mechanical thermal analysis and tensile tests measurements were used to monitor the changes which occur during the ageing process. Over the period of the study an overall increase in the tensile strength was noted, with little or no change in 0.2% and 2% proof stresses, whilst there was a decrease in bending modulus and glass transition temperature due to the effects of plasticization. The Young's modulus generally increases for samples exposed to a temperature of 175 °C in the presence of a mixture of 90% methane and 10% carbon dioxide, or carbon dioxide alone, but it decreases at 200 degrees C in the presence of carbon dioxide alone. The observed effects are consistent with the polymer undergoing initially a densification of the matrix associated with annealing-induced crystallisation, followed by plasticization as the gases permeate into the disordered regions of the matrix. When de-pressurised, the gas dissolved in the matrix attempts to leave the matrix and morphological changes are observed. The complexity of the changes in crystallinity and plasticization in the disordered phase are reflected in changes in the positron annihilation data. <br/></p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • Carbon
  • glass
  • glass
  • strength
  • positron annihilation lifetime spectroscopy
  • glass transition temperature
  • differential scanning calorimetry
  • aging
  • annealing
  • tensile strength
  • ketone
  • crystallinity
  • densification
  • disordered phase