Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schuurmans, Paul

  • Google
  • 3
  • 8
  • 9

Belgian Nuclear Research Centre

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Revealing wear mechanisms of coated shafts in low-speed journal bearings immersed in liquid Lead-Bismuth Eutectic (LBE)citations
  • 2024Changes in chemical composition of TixAl1−xN coatings immersed in oxygen-saturated Lead–Bismuth Eutectic at low and moderate temperatures (250 °C ≤ T ≤ 410 °C)3citations
  • 2019Remote Thermoelastic Characterization of Candidate Structural and Protective Coatings for Lead-Bismuth Eutectic Cooled Nuclear Reactors6citations

Places of action

Chart of shared publication
Serag, Essam Sadik Talaat
2 / 3 shared
Lucas, Stéphane
2 / 33 shared
Haye, Emile
2 / 28 shared
Caers, Ben
2 / 4 shared
Verstraeten, Bert
1 / 3 shared
Sermeus, Jan
1 / 2 shared
Donck, Tom Van Der
1 / 2 shared
Glorieux, Christ
1 / 18 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Serag, Essam Sadik Talaat
  • Lucas, Stéphane
  • Haye, Emile
  • Caers, Ben
  • Verstraeten, Bert
  • Sermeus, Jan
  • Donck, Tom Van Der
  • Glorieux, Christ
OrganizationsLocationPeople

article

Changes in chemical composition of TixAl1−xN coatings immersed in oxygen-saturated Lead–Bismuth Eutectic at low and moderate temperatures (250 °C ≤ T ≤ 410 °C)

  • Serag, Essam Sadik Talaat
  • Lucas, Stéphane
  • Schuurmans, Paul
  • Haye, Emile
  • Caers, Ben
Abstract

Lead–Bismuth Eutectic (LBE) will serve as a liquid metal coolant in accelerator-driven systems, posing a corrosive threat to exposed materials. To address this challenge, TixAl1-xN coatings (0.38 ≤ x ≤ 0.58) were applied onto AISI 316 L austenitic stainless steel using the reactive bipolar magnetron sputtering technique. These coated samples underwent immersion in static oxygen-saturated LBE at temperatures of 250 °C and 360 °C for durations of 500 h and 1000 h, and at 410 °C for 500 h. XPS depth profiles revealed minimal oxidation at 250 °C even after 1000 h. However, at 360 °C, a mixed oxide layer of (Ti, Al)Ox was formed on the coating's surface. Exposure to LBE at 410 °C for 500 h led to the creation of an oxide bilayer comprising TiO2 (outer sublayer) and (Ti, Al)Ox depleted of Ti (inner sublayer). A model is proposed to illustrate the oxidation mechanism.

Topics
  • impedance spectroscopy
  • surface
  • stainless steel
  • x-ray photoelectron spectroscopy
  • Oxygen
  • reactive
  • chemical composition
  • Bismuth