Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thomas, Spencer L.

  • Google
  • 4
  • 6
  • 482

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019The Coupling of Grain Growth and Twinning in FCC Metals3citations
  • 2018Machine learning determination of atomic dynamics at grain boundaries80citations
  • 2018Grain-boundary kinetics343citations
  • 2016When twins collide56citations

Places of action

Chart of shared publication
Srolovitz, David
4 / 65 shared
Cubuk, Ekin D.
1 / 1 shared
Schoenholz, Samuel S.
1 / 1 shared
Liu, Andrea J.
1 / 2 shared
Sharp, Tristan A.
1 / 1 shared
King, Alexander H.
1 / 1 shared
Chart of publication period
2019
2018
2016

Co-Authors (by relevance)

  • Srolovitz, David
  • Cubuk, Ekin D.
  • Schoenholz, Samuel S.
  • Liu, Andrea J.
  • Sharp, Tristan A.
  • King, Alexander H.
OrganizationsLocationPeople

article

Grain-boundary kinetics

  • Thomas, Spencer L.
  • Srolovitz, David
Abstract

Grain boundaries (GBs) are central defects for describing polycrystalline materials, and playing major role in a wide-range of physical properties of polycrystals. Control over GB kinetics provides effective means to tailor polycrystal properties through material processing. While many approaches describe different GB kinetic phenomena, this review provides a unifying concept for a wide range of GB kinetic behavior. Our approach rests on a disconnection description of GB kinetics. Disconnections are topological line defects constrained to crystalline interfaces with both step and dislocation character. These characteristics can be completely specified by GB bicrystallography and the macroscopic degrees of freedom of GBs. GB thermal fluctuations, GB migration and the ability of GBs to absorb/emit other defects from/into the delimiting grains can be modeled via the nucleation, propagation and reaction of disconnections in the GB. We review the fundamentals of bicrystallography and its relationship to disconnections and ultimately to the kinetic behavior of GBs. We then relate disconnection dynamics and GB kinetics to microstructural evolution. While this review of the GB kinetics literature is not exhaustive, we review much of the foundational literature and draw comparisons from a wide swath of the extant experimental, simulation, and theoretical GB kinetics literature.

Topics
  • impedance spectroscopy
  • grain
  • simulation
  • dislocation