People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siahpoush, V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Modeling and optimizing the performance of plasmonic solar cells using effective medium theory
Abstract
<p>In this paper, the effects of random Ag nanoparticle used within the active layer of Si based thin film solar cell are investigated. To avoid the complexity of taking into account all random nanoparticles, an effective dielectric function for random Ag nanoparticles and Si nanocomposites is used that is the Maxwell–Garnet theory along with Percus–Yevick correction term. Considering the energy reservation law and using the effective dielectric function, the absorbance of the active layer, therefore, the solar cell's maximum short current density is obtained. Also, the maximum external quantum efficiency of the solar cell is obtained using the optimum values for the radius and filling fraction of Ag nanoparticles.</p>