People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krasheninnikov, Arkady
Helmholtz-Zentrum Dresden-Rossendorf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Roadmap for focused ion beam technologiescitations
- 2023Phase transformations in single-layer MoTe<sub>2</sub> stimulated by electron irradiation and annealingcitations
- 2021Water dissociation and association on mirror twin boundaries in two-dimensional MoSe2: insights from density functional theory calculationscitations
- 2020Simulating Raman spectra by combining first-principles and empirical potential approaches with application to defective MoS2citations
- 2016Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational studycitations
- 2016Nanostructured BN-Mg composites: features of interface bonding and mechanical propertiescitations
- 2015Line and rotational defects in boron-nitrene: Structure, energetics, and dependence on mechanical strain from first-principles calculationscitations
- 2008Ion irradiation of carbon nanotubes encapsulating cobalt crystalscitations
- 2006Swift chemical sputtering of covalently bonded materialscitations
- 2006Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubescitations
Places of action
Organizations | Location | People |
---|
article
Ion irradiation of carbon nanotubes encapsulating cobalt crystals
Abstract
The response of multi-walled carbon nanotubes encapsulating Co nanorods to ion irradiation was studied. The irradiation experiments with medium ion energies (40-500 keV) were carried out at high temperatures and combined with transmission electron microscopy and Raman characterization of the irradiated samples. Contrary to electron irradiation and high-energy (100 MeV) ion irradiation, we did not see accumulation of pressure inside irradiated nanotubes. We found that nanotubes with Co nanorods inside were transformed to amorphous carbon rods encapsulating Co clusters with typical diameters of 3-6 nm. As Co is magnetic, such one-dimensional composite systems could be used for various applications such as magnetic data storage or magnetic resonance imaging. (C) 2007 Elsevier B.V. All rights reserved.