Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bennett, A.

  • Google
  • 2
  • 17
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013In situ metal imaging and Zn ligand-speciation in a soil-dwelling sentinel10citations
  • 2004InSb epilayers on GaAs(100) for spintronic and magneto-resistive sensor applications18citations

Places of action

Chart of shared publication
Morgan, A. J.
1 / 1 shared
Harmer, Jane
1 / 2 shared
Mosselmans, J. F. W.
1 / 1 shared
Kille, P.
1 / 1 shared
Winters, C.
1 / 1 shared
Oreilly, M.
1 / 1 shared
Gunning, P.
1 / 1 shared
Fisher, P.
1 / 2 shared
Charnock, J. M.
1 / 2 shared
Turner, M.
1 / 4 shared
Cohen, L. F.
1 / 12 shared
Branford, W. R.
1 / 9 shared
Stradling, R. A.
1 / 1 shared
Zhang, Tong
1 / 2 shared
Clowes, Steven
1 / 5 shared
Debnath, M.
1 / 2 shared
Roberts, C.
1 / 4 shared
Chart of publication period
2013
2004

Co-Authors (by relevance)

  • Morgan, A. J.
  • Harmer, Jane
  • Mosselmans, J. F. W.
  • Kille, P.
  • Winters, C.
  • Oreilly, M.
  • Gunning, P.
  • Fisher, P.
  • Charnock, J. M.
  • Turner, M.
  • Cohen, L. F.
  • Branford, W. R.
  • Stradling, R. A.
  • Zhang, Tong
  • Clowes, Steven
  • Debnath, M.
  • Roberts, C.
OrganizationsLocationPeople

article

InSb epilayers on GaAs(100) for spintronic and magneto-resistive sensor applications

  • Cohen, L. F.
  • Branford, W. R.
  • Stradling, R. A.
  • Zhang, Tong
  • Clowes, Steven
  • Bennett, A.
  • Debnath, M.
  • Roberts, C.
Abstract

Both magneto-resistive sensors and spintronic hybrid semiconductor devices require thin epitaxial layers of high-mobility InSb. Here we study unintentionally doped InSb epilayers grown on semi-insulating GaAs(100) substrates by molecular-beam epitaxy. We have introduced an initial low-temperature growth step extending the work that the NTT group reported in 2000. We find significant improvement in the room temperature mobility for epilayer thickness between 60 and 300 nm. The importance of the initial growth step to the epilayer mobility performance is discussed....

Topics
  • impedance spectroscopy
  • mobility
  • semiconductor