Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ken, Soléakhéna

  • Google
  • 1
  • 10
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Shaping for PET image analysis10citations

Places of action

Chart of shared publication
Grossiord, Eloïse
1 / 1 shared
Naegel, Benoît
1 / 1 shared
Tal, Ilan
1 / 1 shared
Najman, Laurent
1 / 1 shared
Kanoun, Salim
1 / 1 shared
Passat, Nicolas
1 / 3 shared
Tervé, Pierre
1 / 1 shared
Meignan, Michel
1 / 1 shared
Casasnovas, Olivier
1 / 1 shared
Talbot, Hugues
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Grossiord, Eloïse
  • Naegel, Benoît
  • Tal, Ilan
  • Najman, Laurent
  • Kanoun, Salim
  • Passat, Nicolas
  • Tervé, Pierre
  • Meignan, Michel
  • Casasnovas, Olivier
  • Talbot, Hugues
OrganizationsLocationPeople

article

Shaping for PET image analysis

  • Grossiord, Eloïse
  • Naegel, Benoît
  • Tal, Ilan
  • Najman, Laurent
  • Kanoun, Salim
  • Ken, Soléakhéna
  • Passat, Nicolas
  • Tervé, Pierre
  • Meignan, Michel
  • Casasnovas, Olivier
  • Talbot, Hugues
Abstract

Component-trees constitute an efficient data structure for hierarchical image modeling. In particular they are relevant for processing and analyzing images where the structures of interest correspond either to local maxima or local minima of intensity. This is indeed the case of functional data inmedical imaging. This motivates the use of component-tree-based approaches for analyzing Positron Emission Tomography (PET) images in the context of oncology. In this article, we present a simple, yet efficient, methodological framework for PET image analysis based on component-trees. More precisely, we show that the second-order paradigm of shaping, that broadly consists of computing the component-tree of a component-tree, provides a relevant way of generalizing the threshold-based strategies classically used by medical practitioners for handling PET images. In addition, it also allows to embed relevant priors regarding the sought cancer lesions.

Topics
  • impedance spectroscopy
  • tomography