People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vivo, Paola
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (46/46 displayed)
- 2024Lattice Engineering via Transition Metal Ions for Boosting Photoluminescence Quantum Yields of Lead-Free Layered Double Perovskite Nanocrystalscitations
- 2024Lattice Engineering via Transition Metal Ions for Boosting Photoluminescence Quantum Yields of Lead-Free Layered Double Perovskite Nanocrystalscitations
- 2024Lattice Engineering via Transition Metal Ions for Boosting Photoluminescence Quantum Yields of Lead-Free Layered Double Perovskite Nanocrystalscitations
- 2024Probing compositional engineering effects on lead-free perovskite-inspired nanocrystal thin films using correlative nonlinear optical microscopycitations
- 2024Surface-Engineered Cesium Lead Bromide Perovskite Nanocrystals for Enabling Photoreduction Activitycitations
- 2024Assessing the Environmental Impact of Pnictogen-based Perovskite-Inspired Materials for Indoor Photovoltaicscitations
- 2024Simplifying perovskite solar cell fabrication for materials testing : how to use unetched substrates with the aid of a three-dimensionally printed cell holder
- 2024Perovskite‐Inspired Cs₂AgBi₂I₉: A Promising Photovoltaic Absorber for Diverse Indoor Environmentscitations
- 2024Halide Perovskites for Photoelectrochemical Water Splitting and CO2 Reductioncitations
- 2024Synergistic metal halide perovskite@metal-organic framework hybrids for photocatalytic CO2 reductioncitations
- 2024Halide Engineering in Mixed Halide Perovskite-Inspired Cu2AgBiI6 for Solar Cells with Enhanced Performancecitations
- 2024Probing compositional engineering effects on lead-free perovskiteinspired nanocrystal thin films using correlative nonlinear optical microscopycitations
- 2023Introduction
- 2023Wide‐Bandgap Perovskite‐Inspired Materials: Defect‐Driven Challenges for High‐Performance Optoelectronicscitations
- 2023Water-resistant perovskite-inspired copper/silver pnictohalide nanocrystals for photoelectrochemical water splittingcitations
- 2023Water-resistant perovskite-inspired copper/silver pnictohalide nanocrystals for photoelectrochemical water splittingcitations
- 2023Wide-bandgap perovskite-inspired materials: defect-driven challenges for high-performance optoelectronicscitations
- 2023Antimony-Bismuth Alloying : The Key to a Major Boost in the Efficiency of Lead-Free Perovskite-Inspired Photovoltaicscitations
- 2023Triple A-Site Cation Mixing in 2D Perovskite-Inspired Antimony Halide Absorbers for Efficient Indoor Photovoltaicscitations
- 2023Triple A-Site Cation Mixing in 2D Perovskite-Inspired Antimony Halide Absorbers for Efficient Indoor Photovoltaicscitations
- 2023Lead-free perovskite-inspired semiconductors for indoor light-harvesting - the present and the futurecitations
- 2023Lead-free perovskite-inspired semiconductors for indoor light-harvesting - the present and the futurecitations
- 2023Screening Mixed-Metal Sn2M(III)Ch2X3 Chalcohalides for Photovoltaic Applicationscitations
- 2023Antimony‐Bismuth Alloying: The Key to a Major Boost in the Efficiency of Lead‐Free Perovskite‐Inspired Photovoltaicscitations
- 2023Antimony-Bismuth Alloyingcitations
- 2022Flexible Organic Photovoltaics with Star-Shaped Nonfullerene Acceptors End Capped with Indene Malononitrile and Barbiturate Derivativescitations
- 2021Tuning halide perovskite energy levelscitations
- 2021Tuning halide perovskite energy levelscitations
- 2021Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2021There is plenty of room at the topcitations
- 2020Monitoring Charge Carrier Diffusion across a Perovskite Film with Transient Absorption Spectroscopycitations
- 2020Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskitecitations
- 2020Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskitecitations
- 2020Tuning halide perovskite energy levelscitations
- 2020Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2020Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2020Investigation of well-defined pinholes in TiO 2 electron selective layers used in planar heterojunction perovskite solar cellscitations
- 2020Investigation of well-defined pinholes in TiO2 electron selective layers used in planar heterojunction perovskite solar cellscitations
- 2019Nano-structured TiO2 grown by low-temperature reactive sputtering for planar perovskite solar cellscitations
- 2019Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infraredcitations
- 2019Highly Compact TiO<sub>2</sub> Films by Spray Pyrolysis and Application in Perovskite Solar Cellscitations
- 2019Eco-friendly and low-cost phenothiazine-based hole-transporting material for high performance perovskite solar cells
- 2017Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO2 Layers on the Performance of Mesoscopic Perovskite Solar Cellscitations
- 2017Crystallisation-enhanced bulk hole mobility in phenothiazine-based organic semiconductorscitations
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
Places of action
Organizations | Location | People |
---|
article
Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cells
Abstract
<p>In this work, a fluorinated pyrene-based organic semiconductor (L-F) has been designed and synthesized starting from a low-cost pyrene core functionalized with triphenilamine substituents at 1,3,6,8 positions (L-H), obtained via Suzuki coupling reactions. Its performance when used as green emitter in organic light emitting diodes (OLEDs) or as dopant-free hole-transporting material (HTM) in halide perovskite solar cells (PSCs) is higher than that of the L-H counterpart, in spite of its lower bulk hole-mobility (7.0 × 10<sup>−6</sup> cm<sup>2</sup>/V) to L-H (1.9 × 10<sup>−4</sup> cm<sup>2</sup>/V). In fact, the OLED devices based on a L-F active layer showed excellent green emission (brightness and current efficiency were 1759.8 cd/m<sup>2</sup> and 3.7 cd/A, respectively) at a 4.5 V turn-on voltage. When the molecules were employed as a dopant-free HTM in PSCs, L-F led to a power conversion efficiency (PCE) and open circuit voltage (V<sub>oc</sub>) of 5.9% and 1.07 V, respectively, thus outperforming those of corresponding devices based on L-H (PCE = 5.0% and V<sub>oc</sub> = 0.87 V) under similar experimental conditions (AM 1.5G and 100 mW cm<sup>2</sup>). We attribute the enhancements of L-F-based optoelectronic devices (OLEDs and PSCs) to the observed better quality of the L-F films. The promising performance of L-F indicates that fluorination of small molecules can be an effective strategy to achieve low-cost and high-performing materials for energy harvesting and display-based organic electronic devices.</p>