Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kulszewicz-Bajer, Irena

  • Google
  • 4
  • 18
  • 417

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Copolymers Containing 1-Methyl-2-phenyl-imidazole Moieties as Permanent Dipole Generating Units: Synthesis, Spectroscopic, Electrochemical, and Photovoltaic Propertiescitations
  • 2019Self-assembly and charge carrier transport of sublimated dialkyl substituted quinacridones7citations
  • 2013Polymers for electronics and spintronics395citations
  • 2012Comparison of simulations to experiment for a detailed analysis of space-charge-limited transient current measurements in organic semiconductors15citations

Places of action

Chart of shared publication
Korona, Krzysztof P.
1 / 4 shared
Wróbel, Zbigniew
2 / 2 shared
Drapała, Jakub
1 / 1 shared
Maranda-Niedbała, Agnieszka
1 / 1 shared
Nowakowski, Robert
1 / 5 shared
Wielgus, Ireneusz
2 / 2 shared
Mech, Wojciech
1 / 1 shared
Zagórska, Małgorzata
2 / 9 shared
Krygier, Izabela
1 / 1 shared
Marszałek, Tomasz
1 / 1 shared
Pisula, Wojciech
1 / 11 shared
Proń, Adam
2 / 10 shared
Blom, Paul M. W.
1 / 1 shared
Bujak, Piotr
1 / 4 shared
Maurel, Vincent
1 / 34 shared
Djurado, David
1 / 10 shared
Szymański, Marek Z.
1 / 1 shared
Faure-Vincent, Jérôme
1 / 14 shared
Chart of publication period
2022
2019
2013
2012

Co-Authors (by relevance)

  • Korona, Krzysztof P.
  • Wróbel, Zbigniew
  • Drapała, Jakub
  • Maranda-Niedbała, Agnieszka
  • Nowakowski, Robert
  • Wielgus, Ireneusz
  • Mech, Wojciech
  • Zagórska, Małgorzata
  • Krygier, Izabela
  • Marszałek, Tomasz
  • Pisula, Wojciech
  • Proń, Adam
  • Blom, Paul M. W.
  • Bujak, Piotr
  • Maurel, Vincent
  • Djurado, David
  • Szymański, Marek Z.
  • Faure-Vincent, Jérôme
OrganizationsLocationPeople

article

Self-assembly and charge carrier transport of sublimated dialkyl substituted quinacridones

  • Krygier, Izabela
  • Wróbel, Zbigniew
  • Marszałek, Tomasz
  • Pisula, Wojciech
  • Kulszewicz-Bajer, Irena
  • Proń, Adam
  • Blom, Paul M. W.
Abstract

Quinacridone, an industrial pigment, has recently shown a high charge carriers mobility in field-effect transistors. In search for new cheap organic semiconductors of improved vacuum processability we have synthesized three dialkyl derivatives of quinacridone, namely N,N'-dialkylquinacridones (alkyl = butyl, octyl, dodecyl), abbreviated as QA-C4, QA-C8 and QA-C12. The alkylation of quinacridone results in a significant decrease of its melting temperature which drops from 390 degrees C for quinacridone to 261 degrees C, 177 degrees C and 134 degrees C for QA-C4, QA-C8 and QA-C12, respectively, while retaining the onset of thermal decomposition above 390 degrees C. The elimination of the hydrogen bonding network between the carbonyl groups and amine hydrogens through alkylation not only lowers the melting temperature, but also induces supramolecular ordering in contrast to unsubstituted quinacridone. Detailed morphological and structural investigations of the vacuum deposited thin films have revealed that the length of the alkyl substituent is crucial for the molecular self-organization. Compound QA-C4 forms poorly ordered films, whereas QA-C8 and QA-C12 grow into a spherulitic dense morphology with increasing domain size at higher deposition temperatures. The more pronounced morphology is related to the lower melting point of the compounds and strong molecular diffusion during deposition. The poorly ordered films of QA-C4 do not show any field-effect response, what is consistent with previous reports. In contrast, transistors with QA-C8 or QA-C12 as active layers exhibit hole transport. Optimization of the deposition temperature, in which nucleation and crystal growth are properly balanced, resulted in OA-C8-based transistors with a hole mobility of 0.3 cm(2)/V, i.e. higher than in devices with unsubstituted quinacridone.

Topics
  • Deposition
  • impedance spectroscopy
  • compound
  • mobility
  • thin film
  • semiconductor
  • Hydrogen
  • amine
  • thermal decomposition
  • self-assembly
  • melting temperature