Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santos, Gil Nonato C.

  • Google
  • 1
  • 4
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Negative differential resistance in polymer tunnel diodes using atomic layer deposited, TiO2 tunneling barriers at various deposition temperatures7citations

Places of action

Chart of shared publication
Berger, Paul R.
1 / 16 shared
Guttman, Jeremy J.
1 / 1 shared
Chambers, Conner B.
1 / 1 shared
Villagracia, Al Rey
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Berger, Paul R.
  • Guttman, Jeremy J.
  • Chambers, Conner B.
  • Villagracia, Al Rey
OrganizationsLocationPeople

article

Negative differential resistance in polymer tunnel diodes using atomic layer deposited, TiO2 tunneling barriers at various deposition temperatures

  • Berger, Paul R.
  • Guttman, Jeremy J.
  • Chambers, Conner B.
  • Villagracia, Al Rey
  • Santos, Gil Nonato C.
Abstract

<p>Atomic layer deposition (ALD) presents a method to deposit uniform and conformal thin-film layers with a high degree of control and repeatability. Quantum functional devices that provide opportunities in low-power molecular and organic based memory and logic via thin metal-oxide tunneling layer were previously reported by Yoon et al. [1]. Demonstrated here area polymer tunnel diodes (PTD) with high negative differential resistance (NDR) using an ALD deposited tunneling layer grown between 250 °C – 350 °C. A critical relationship between deposition temperature, oxygen vacancy concentration and room temperature NDR is presented. In this work, for a TiO<sub>2</sub> deposition temperature of 250 °C, the peak NDR voltage position (V<sub>peak</sub>) and associated peak current density (J<sub>peak</sub>) are ∼4.3 V and −0.14 A/cm<sup>2</sup>, respectively, with a PVCR as high as 1.69 while operating at room temperature. The highest PVCR recorded was 4.89 ± 0.18 using an ALD deposition temperature of 350 °C. The key advantages of the ALD process used in fabrication of PTDs are increased repeatability and manufacturability.</p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • Oxygen
  • current density
  • vacancy
  • atomic layer deposition