People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Majewski, Leszek A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Low-voltage IGZO TFTs using solution-deposited OTS-modified Ta2O5 dielectriccitations
- 2016Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)citations
- 2015Dielectric materials for low voltage OFET operation
- 2015Solution-processed nanocomposite dielectrics for low voltage operated OFETscitations
- 2012Cyclopentadithiophene-benzothiadiazole oligomers and polymers; Synthesis, characterisation, field-effect transistor and photovoltaic characteristicscitations
- 2008Triarylamine polymers by microwave-assisted polycondensation for use in organic field-effect transistorscitations
- 2005Electrode specific electropolymerization of ethylenedioxythiophene: Injection enhancement in organic transistorscitations
- 2004Organic field-effect transistors with electroplated platinum contacts
- 2004Organic field-effect transistors with ultrathin gate insulator
Places of action
Organizations | Location | People |
---|
article
Solution-processed nanocomposite dielectrics for low voltage operated OFETs
Abstract
A novel, solution processed high-k nanocomposite/low-k polymer bilayer gate dielectric that enables the fabrication of organic field-effect transistors (OFETs) that operate effectively at 1 V in high yields is reported. Barium strontium titanate (BST) and barium zirconate (BZ) nanoparticles are dispersed in a poly (vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP) polymer matrix to form a high-k nanocomposite layer. This is capped with a thin layer (ca 30 nm) of cross-linked poly(vinyl phenol) (PVP) to improve the surface roughness and dielectric–semiconductor interface and reduces the leakage current by at least one order of magnitude. OFETs were fabricated using solution-processed semiconductors, poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione)thieno[3,2-b]thiophene) and a blend of 6,13-bis (triisopropylsilylethynyl) pentacene and poly (α-methylstyrene), in high yield (>90%) with negligible hysteresis and low leakage current density (10−9 A cm−2 at ±1 V).