People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koster, Lja
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023The Role of Thermalization in the Cooling Dynamics of Hot Carrier Solar Cellscitations
- 2022A method for identifying the cause of inefficient salt-doping in organic semiconductorscitations
- 2022Vacuum-Deposited Cesium Tin Iodide Thin Films with Tunable Thermoelectric Propertiescitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurementscitations
- 2021Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystalscitations
- 2021Carrier-carrier Coulomb interactions reduce power factor in organic thermoelectricscitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2020Reaching a Double-Digit Dielectric Constant with Fullerene Derivativescitations
- 2020Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactionscitations
- 2020N-type organic thermoelectricscitations
- 2020Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskitescitations
- 20191,8-diiodooctane acts as a photo-acid in organic solar cellscitations
- 2018Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectricscitations
- 2017N-Type Organic Thermoelectricscitations
- 2017Relating polymer chemical structure to the stability of polymer:citations
- 2016Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Dopingcitations
- 2016N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stabilitycitations
- 2016A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrentscitations
- 2016Compatibility of PTB7 and [70]PCBM as a Key Factor for the Stability of PTB7citations
- 2015The Effect of Large Compositional Inhomogeneities on the Performance of Organic Solar Cellscitations
- 2015Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubilitycitations
- 2014Strategy for Enhancing the Electric Permittivity of Organic Semiconductors
- 2014Charge transport and recombination in PDPP5Tcitations
- 2011Validity of the Einstein Relation in Disordered Organic Semiconductorscitations
- 2007Device physics of polymercitations
- 2007Device physics of donor/acceptor-blend solar cells
- 2007Hybrid polymer solar cells from highly reactive diethylzinccitations
- 2006Light intensity dependence of open-circuit voltage and short-circuit current of polymer/fullerene solar cellscitations
- 2005Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cellscitations
- 2004Effect of metal electrodes on the performance of polymercitations
Places of action
Organizations | Location | People |
---|
article
Charge transport and recombination in PDPP5T
Abstract
<p>The performance of organic bulk heterojunction solar cells is strongly dependent on the donor/acceptor morphology. Morphological parameters, such as the extent and the composition of donor- and acceptor-rich domains, influence both the charge generation and the charge transport throughout the active layer. This work focuses on a polymer:fullerene system based on a small bandgap diketopyrrolopyrrole-quinquethiophene alternating copolymer (PDPP5T) mixed with [6,6]-phenyl-C-71-butyric acid methyl ester ([70]PCBM) that is capable of efficiencies higher than 6%. By changing the processing conditions, the morphology can be varied from a coarse separated morphology, with fullerene domains (blobs) embedded in a polymer-rich matrix, to a completely mixed layer.</p><p>The charge carrier transport and the strength of the bimolecular recombination in PDPP5T:[70]PCBM blends with different morphologies and fullerene concentrations are experimentally characterized. The large difference in electron and hole mobility and the electric field dependency of the electron mobility are identified as the causes that limit the performance of devices with low [70]PCBM content. These effects are not present if the concentration of [70]PCBM is increased while keeping a fine phase separation by the addition of ortho-dichlorobenzene as a cosolvent.</p><p>For the phase-separated blends, a model is proposed, based on a drift-diffusion approach that combines electrical and morphological parameters; with this model the contribution of each phase to the total current is quantified. Under operating conditions, most of the current comes from the interfacial region between the phases, with holes traveling through the matrix and the electrons through the blobs. This device model consistently connects morphological features to overall device performance. (C) 2014 Elsevier B.V. All rights reserved.</p>