Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Davidson, Paul

  • Google
  • 2
  • 4
  • 153

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state - consequences for the formation of pegmatites and ore deposits131citations
  • 2013Diversity of primary CL textures in quartz from porphyry environments: implication for origin of quartz eyes22citations

Places of action

Chart of shared publication
Thomas, R.
1 / 40 shared
Vasyukova, Ov
1 / 1 shared
Goemann, Karsten
1 / 2 shared
Kamenetsky, Vadim
1 / 2 shared
Chart of publication period
2016
2013

Co-Authors (by relevance)

  • Thomas, R.
  • Vasyukova, Ov
  • Goemann, Karsten
  • Kamenetsky, Vadim
OrganizationsLocationPeople

article

Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state - consequences for the formation of pegmatites and ore deposits

  • Thomas, R.
  • Davidson, Paul
Abstract

<p>Using water and major and trace element data obtained from melt inclusions primarily in pegmatite quartz we have shown in this, and previous papers, that melt?melt?fluid immiscibility is widespread and an important process during the generation of granitic pegmatites. Furthermore we have shown that the formation of pegmatites actually begins in the supercritical melt/fluid stage. In this study we extend previous work, and in particular explore the behavior of 10 different elements (Be, F, P, S, Cl, As, Rb, Sn, Cs, and Ta) in the supercritical range. From preliminary studies we suggest that other elements such as B, Na, K, Zn, Nb, and Sb will behave similarly near the solvus crest of a generalized pseudo-binary melt?water system. This provides important evidence that pegmatite-forming processes have already begun at high temperatures, in the range of 850?750 ?C, and that may require a re-think on the partitioning behavior of metals in late stage residual melts exsolved from granitic magmas. The existence of this parental supercritical silicate melt/fluid, although derived from granitic magmas, imposes significant constraints of its own, so drawing conclusions about pegmatite-forming processes from data gained from slightly modified granite compositions becomes highly problematic.</p><p>We propose that the extremely high concentration of some elements over a small but well defined water concentration range, symmetrically distributed around the critical point of the pseudo-binary solvus, must be derived from the unusual properties of the near-critical or supercritical phases. These unusual properties include extremely low density, viscosity and surface tension, and high diffusivity, reactivity and mobility. These are exactly the qualities that make such supercritical fluids an excellent medium for the formations of pegmatites by reactions with the existing matrix melt + crystal mush, and for the extreme enrichment of some ore-forming elements, highly soluble in alkali- and water-rich supercritical fluids.</p><p>A very important point in mineral crystallization is the non-uniform local enrichment of rare and economically significant elements at specific locations in pegmatites, granites and other rocks. Given the properties of the supercritical phase identified from melt inclusions the process of Ostwald ripening can operate very effectively. The driving force for Ostwald ripening arises because the concentration of solute in the vicinity of small crystals or clusters is greater than, and in the vicinity of larger crystals or clusters less than the average supersaturation. The solute in the supercritical fluid therefore flows from the small crystals to the larger crystals, and permits the growth of very large crystals at the expense of smaller ones, this is favored by the extraordinary properties of supercritical fluids. Given the low surface tension the supercritical fluid can move also through grain boundaries and small channels or dislocation pipes, aiding incompatible element transport. Additionally, their consequences for the formation of some important granite-related ore deposits are briefly outlined.</p>

Topics
  • density
  • impedance spectroscopy
  • mineral
  • surface
  • cluster
  • grain
  • inclusion
  • mobility
  • melt
  • laser emission spectroscopy
  • viscosity
  • dislocation
  • diffusivity
  • drawing
  • crystallization
  • trace element
  • Ostwald ripening