People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Traynor, Nicholas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Low intensity noise high-power tunable fiber-based laser around 1007 nm
- 2021Low intensity noise high-power tunable fiber-based laser around 1007 nm
- 2019Low intensity noise high-power tunable fiber-based laser around 1007 nmcitations
- 2018Watt-level narrow-linewidth fibered laser source at 852 nm for FIB applicationcitations
- 2018High-power tunable low-noise coherent source at 1.06µm based on a surface-emitting semiconductor lasercitations
- 2010Chalcogenide glass hollow core photonic crystal fiberscitations
- 2009Te-As-Se glass microstructured optical fiber for the middle infraredcitations
- 2008Small-core chalcogenide microstructured fibers for the infrared.citations
- 2007Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infraredcitations
- 2006Fabrication of complex structures of Holey Fibers in Chalcogenide glass.citations
- 2005Single mode holey fiber in GeGaSbS chalcogenide glass
Places of action
Organizations | Location | People |
---|
article
Chalcogenide glass hollow core photonic crystal fibers
Abstract
We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from Te20As30Se50 (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.