People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Panczer, Gerard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2013Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopycitations
- 2011Behaviour of the Eu3+ D-5(0) -> F-7(0) transition in CaMoO4 powellite type ceramics under Ar and Pb ions implantationcitations
- 2010Effect of chemical composition on borosilicate glass behavior under irradiationcitations
- 2010Luminescent centres in pezzottaite, CsBe2LiAl2Si6O18citations
- 2008Simulation of Eu(3+) luminescence spectra of borosilicate glasses by molecular dynamics calculationscitations
Places of action
Organizations | Location | People |
---|
article
Simulation of Eu(3+) luminescence spectra of borosilicate glasses by molecular dynamics calculations
Abstract
Simplified inactive rare-earths doped nuclear waste glasses have been obtained by molecular dynamics (MD) simulation in order to investigate the local structure around the rare-earth by luminescence studies. MD calculations were performed with modified Born–Mayer–Huggins potentials and three body angular terms representing Coulomb and covalent interactions. Atomic positions within the glasses are then determined. Simulations of luminescence spectra were then obtained by calculation of the ligand field parameters affecting each luminescent ion. Considering the C2v symmetry, it is possible to calculate the radiative transition probabilities between the emitter level, 5D0, and the splitted receptor levels, 7FJ (J = 0–3) for each Eu3+ ion. The simulated emission spectra are obtained by convolution of all the Eu3+ ions contributions. A comparison with the experimental data issue from fluorescence line narrowing and microluminescence spectroscopies allowed us not only to validate the simulation of luminescence spectra from simulated environments, but also to confirm the presence and the identification of two major Eu3+ sites distribution in the nuclear glasses thanks to spectra-structure correlations.