People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ritchie, David
Swansea University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Determining the laser absorptivity of Ti-6Al-4V during selective laser melting by calibrated melt pool simulationcitations
- 2023Advances in Multiscale Modelling of Metal Additive Manufacturing
- 2020A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors.
- 2019Line-defect photonic crystal terahertz quantum cascade lasercitations
- 2019Fine Microstructure Control in Additively Manufactured Stainless Steel via Layerwise Rotation of The Scan Direction
- 2019Corrosion Studies of Additive Manufactured Alpha-Beta Ti Alloys
- 2019Corrosion Studies of Additively Manufactured Ti Alpha-Beta Alloys
- 2019Measurement of Laser Absorptivity by Calibrated Melt Pool Simulation
- 2019Residual Stress in Additive Manufacture
- 2018Systematic Study of Ferromagnetism in CrxSb2-xTe3 Topological Insulator Thin Films using Electrical and Optical Techniques.
- 2018Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wirescitations
- 2011Friction stir blind riveting: A novel joining process for automotive light alloyscitations
Places of action
Organizations | Location | People |
---|
article
Determining the laser absorptivity of Ti-6Al-4V during selective laser melting by calibrated melt pool simulation
Abstract
Additive manufacturing processes such as laser powder bed fusion (LPBF) are now routinely used for advanced medical and aerospace components. However, moving from these bespoke applications to high-volume commercial manufacturing requires higher levels of predictability and control of part properties. Detailed simulations of the LPBF process can assist this transition by providing understanding of defect mechanisms and guiding paths to improvement. An accurate value of laser absorptivity for the material is critical for LPBF simulation but the published literature contains surprisingly little absorptivity data applicable to actual LPBF operating conditions. Here we determine the in-situ laser absorptivity of the alloy Ti-6Al-4V during LPBF to be 0.27 +/- 0.03, for a laser wavelength of 1.07 μm. Our technique involves calibrating melt pool CFD simulations against single-track experiments conducted over a range of energy densities and can be extended to other materials. The simulations incorporate multiple laser reflections and cover the transition from conduction to keyhole mode. We also discuss physical mechanisms that may be responsible for changes in the absorption behaviour at high laser energy density which are observed in this and other work.