Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Franco, Diana

  • Google
  • 1
  • 3
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Analysis of copper sheets welded by fiber laser with beam oscillation31citations

Places of action

Chart of shared publication
Miranda, R. M.
1 / 58 shared
Santos, Telmo G.
1 / 62 shared
Oliveira, João Pedro
1 / 98 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Miranda, R. M.
  • Santos, Telmo G.
  • Oliveira, João Pedro
OrganizationsLocationPeople

article

Analysis of copper sheets welded by fiber laser with beam oscillation

  • Miranda, R. M.
  • Santos, Telmo G.
  • Oliveira, João Pedro
  • Franco, Diana
Abstract

<p>Laser welding of Copper is a challenge due to its high thermal conductivity, low absorptivity of laser light and facility to dissolve oxygen favoring the formation of oxides. However, recent developments suggest that these problems can be overcome by power spatial modulation of the laser beam. This paper presents results on laser welding with beam oscillation (wobbling effect) performed on Copper plates. The effect of the major welding parameters on the weld surface aspect and bead profile are discussed, as well as the microstructure evolution. An interesting feature was observed in the microstructure of the fusion zone in the form of circular shaped bands which result from the solidification front of the weld metal as the laser oscillates and travels continuously. No defects were seen in the welds suggesting this variant of laser welding has potential for industrial applications where high thermal and/or electrical conductivities are required.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • Oxygen
  • copper
  • defect
  • thermal conductivity
  • solidification