People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poelman, Gaétan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Automated woven background removal for enhanced infrared thermographic inspection of fabric composites
- 2022Broadband nonlinear elastic wave modulation spectroscopy for damage detection in compositescitations
- 2022Phase inversion in (vibro-)thermal wave imaging of materials: Extracting the AC component and filtering nonlinearitycitations
- 2021Phase inversion for accurate extraction of the harmonic thermal response in active infrared thermographic NDT
- 2021Broadband nonlinear elastic wave modulation spectroscopy for damage detection in composites
- 2021On the application of an optimized frequency-phase modulated waveform for enhanced infrared thermal wave radar imaging of compositescitations
- 2021Vibro-Thermal Wave Radar: Application of Barker Coded Amplitude Modulation for Enhanced Low-Power Vibrothermographic Inspection of Compositescitations
- 2020An experimental study on the defect detectability of time- and frequency-domain analyses for flash thermographycitations
- 2020Adaptive spectral band integration in flash thermography : enhanced defect detectability and quantification in compositescitations
- 2020A robust multi-scale gapped smoothing algorithm for baseline-free damage mapping from raw thermal images in flash thermography
- 2020Multi-scale gapped smoothing algorithm for robust baseline-free damage detection in optical infrared thermographycitations
- 2020Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Compositescitations
- 2020Probing the limits of full-field linear local defect resonance identification for deep defect detectioncitations
- 2020Vibrothermographic spectroscopy with thermal latency compensation for effective identification of local defect resonance frequencies of a CFRP with BVIDcitations
- 2019In-plane local defect resonances for efficient vibrothermography of impacted carbon fiber reinforced plastics (CFRP)citations
- 2019Performance of frequency and/or phase modulated excitation waveforms for optical infrared thermography of CFRPs through thermal wave radar : a simulation studycitations
- 2019Efficient automated extraction of local defect resonance parameters in fiber reinforced polymers using data compression and iterative amplitude thresholdingcitations
- 2019Sweep vibrothermography and thermal response derivative spectroscopy for identification of local defect resonance frequencies of impacted CFRPcitations
- 2018Optical infrared thermography of CFRP with artificial defects : performance of various post-processing techniquescitations
- 2018Automated extraction of local defect resonance for efficient non-destructive testing of composites
Places of action
Organizations | Location | People |
---|
article
On the application of an optimized frequency-phase modulated waveform for enhanced infrared thermal wave radar imaging of composites
Abstract
Thermal Wave Radar (TWR) imaging employs the concept of pulse compression in order to obtain an increased probing depth and depth resolution in infrared thermographic testing of materials. The efficiency of the TWR imaging is highly dependent on the nature of the employed excitation signal. Most studies exploit the use of an excitation signal with an analogue frequency modulation (e.g. sweep signal) or a discrete phase modulation (e.g. Barker coded signal). Recently, a novel frequency-phase modulated (FPM) waveform was introduced, and computationally verified by the current authors, which couples the concept of frequency- and phase modulation to each other in view of obtaining an optimized excitation signal for improved TWR imaging. This paper experimentally investigates the performance of the novel optimized FPM waveform for the inspection of glass and carbon fiber reinforced polymer (GFRP and CFRP) composites, using an optical infrared thermography set-up in reflection mode. The response of the halogen lamps to the FPM waveform is measured, and further the influence of the electro-thermal latency of excitation lamps on the applicability of the novel FPM excitation signal is analytically investigated. Then, the performance of the FPM waveform is experimentally investigated for both glass- and carbon fiber reinforced polymers with defects of different depths and sizes. A comparative analysis is performed with amplitude modulated (classical lock-in), frequency modulated (sweep) and phase modulated (Barker coded) excitation, each with the same time duration as the FPM waveform. The novel FPM waveform outperforms these existing waveforms in terms of defect detectability and contrast-to-noise ratio, especially for the deeper defects. Different central frequencies are examined and the improved performance of the FPM waveform in TWR imaging is demonstrated in all cases.